Hewitt's irresolvability and induced Sublocales in spatial frames

被引:4
作者
Baboolal, Dharmanand [1 ]
Picado, Jorge [2 ]
Pillay, Paranjothi [1 ]
Pultr, Ales [3 ,4 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, ZA-4000 Durban, South Africa
[2] Univ Coimbra, CMUC, Dept Math, P-3001501 Coimbra, Portugal
[3] Charles Univ Prague, Dept Appl Math, Malostranske Nam 24, CR-11800 Prague 1, Czech Republic
[4] Charles Univ Prague, CE ITI, MFF, Malostranske Nam 24, CR-11800 Prague 1, Czech Republic
关键词
Frame; spatial frame; locale; sublocale; sublocale lattice; induced sublocale; T-D; -axiom; scattered space; hereditarily irresolvable space;
D O I
10.2989/16073606.2019.1646832
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sublocales of frames, even those representing subspaces (induced sublo-cales), are typically not complemented in the lattice of all sublocales. We present a necessary and sucient condition for an induced sublocale to be so, and prove that all induced sublocales are complemented iff the space in question is hereditarily irresolvable, a property slightly weaker than - and in a broad class of spaces equivalent with - scatteredness (under which condition, by Simmons' result all sublocales are complemented).
引用
收藏
页码:1601 / 1612
页数:12
相关论文
共 12 条
  • [1] Aull C.E., 1963, Indag. Math., V24, P26
  • [2] Banaschewski B., 1994, APPL CATEGOR STRUCT, V2, P331, DOI [10.1007/BF00873038, DOI 10.1007/BF00873038]
  • [3] Pointfree Aspects of the Td Axiom of Classical Topology
    Banaschewski, Bernhard
    Pultr, Ales
    [J]. QUAESTIONES MATHEMATICAE, 2010, 33 (03) : 369 - 385
  • [4] Scattered, Hausdorff-reducible, and hereditarily irresolvable spaces
    Bezhanishvili, G
    Mines, R
    Morandi, PJ
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2003, 132 (03) : 291 - 306
  • [5] El'kin A.G., 1969, VESTN MOSK U MAT M+, V24, P51
  • [6] Hewitt E., 1943, Duke Math. J, V10, P309, DOI [10.1215/S0012-7094-43-01029-4, DOI 10.1215/S0012-7094-43-01029-4]
  • [7] ATOMLESS PARTS OF SPACES
    ISBELL, JR
    [J]. MATHEMATICA SCANDINAVICA, 1972, 31 (01) : 5 - 32
  • [8] Johnstone P. T., 1982, Cambridge Studies in Advanced Mathematics, V3
  • [9] Picado J, 2012, FRONT MATH, P1
  • [10] Rose D., 2006, Int. J. Math. Math. Sci., P1, DOI [10.1155/IJMMS/2006/53653, DOI 10.1155/IJMMS/2006/53653]