On the local convergence of the Douglas-Rachford algorithm

被引:32
作者
Bauschke, H. H. [1 ]
Noll, D. [2 ]
机构
[1] Univ British Columbia, Kelowna, BC, Canada
[2] Inst Math Toulouse, Toulouse, France
基金
加拿大自然科学与工程研究理事会;
关键词
Nonconvex feasibility problem; Fixed-point; Discrete dynamical system; Convergence; Stability;
D O I
10.1007/s00013-014-0652-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the Douglas-Rachford algorithm to solve the feasibility problem for two closed sets A,B in . We prove its local convergence to a fixed point when A,B are finite unions of convex sets. We also show that for more general nonconvex sets the scheme may fail to converge and start to cycle, and may then even fail to solve the feasibility problem.
引用
收藏
页码:589 / 600
页数:12
相关论文
共 14 条
[1]  
[Anonymous], 1969, Nonlinear programming: a unified approach
[2]  
Artacho F. J. A., 2013, SERDICA MATH J, V39, P313
[3]  
Bauschke H.H., CONT MATH IN PRESS
[4]   Restricted Normal Cones and the Method of Alternating Projections: Theory [J].
Bauschke, Heinz H. ;
Luke, D. Russell ;
Phan, Hung M. ;
Wang, Xianfu .
SET-VALUED AND VARIATIONAL ANALYSIS, 2013, 21 (03) :431-473
[5]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[6]   Finding best approximation pairs relative to two closed convex sets in Hilbert spaces [J].
Bauschke, HH ;
Combettes, PL ;
Luke, DR .
JOURNAL OF APPROXIMATION THEORY, 2004, 127 (02) :178-192
[7]  
Bauschke HH., 2013, SERDICA MATH J, V39, P355
[8]  
Douglas J., 1956, Trans. Am. Math. Soc., V82, P421, DOI [DOI 10.1090/S0002-9947-1956-0084194-4, 10.2307/1993056]
[9]   Searching with iterated maps [J].
Elser, V. ;
Rankenburg, I. ;
Thibault, P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (02) :418-423
[10]   CONVERGENCE OF SEQUENTIAL AND ASYNCHRONOUS NONLINEAR PARACONTRACTIONS [J].
ELSNER, L ;
KOLTRACHT, I ;
NEUMANN, M .
NUMERISCHE MATHEMATIK, 1992, 62 (03) :305-319