The spatiotemporal coupling in delay-coordinates dynamic mode decomposition

被引:2
作者
Bronstein, Emil [1 ]
Wiegner, Aviad [2 ]
Shilo, Doron [1 ]
Talmon, Ronen [2 ]
机构
[1] Technion Israel Inst Technol, Fac Mech Engn, IL-3200003 Haifa, Israel
[2] Technion Israel Inst Technol, Viterbi Fac Elect & Comp Engn, IL-3200003 Haifa, Israel
基金
以色列科学基金会;
关键词
SPECTRAL PROPERTIES; EQUATION-FREE; REDUCTION; COMPUTATION; SYSTEMS; FLOWS;
D O I
10.1063/5.0123101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Dynamic mode decomposition (DMD) is a leading tool for equation-free analysis of high-dimensional dynamical systems from observations. In this work, we focus on a combination of delay-coordinates embedding and DMD, i.e., delay-coordinates DMD, which accommodates the analysis of a broad family of observations. An important utility of DMD is the compact and reduced-order spectral representation of observations in terms of the DMD eigenvalues and modes, where the temporal information is separated from the spatial information. From a spatiotemporal viewpoint, we show that when DMD is applied to delay-coordinates embedding, temporal information is intertwined with spatial information, inducing a particular spectral structure on the DMD components. We formulate and analyze this structure, which we term the spatiotemporal coupling in delay-coordinates DMD. Based on this spatiotemporal coupling, we propose a new method for DMD components selection. When using delay-coordinates DMD that comprises redundant modes, this selection is an essential step for obtaining a compact and reduced-order representation of the observations. We demonstrate our method on noisy simulated signals and various dynamical systems and show superior component selection compared to a commonly-used method that relies on the amplitudes of the modes.
引用
收藏
页数:21
相关论文
共 69 条
[1]   Ergodic Theory, Dynamic Mode Decomposition, and Computation of Spectral Properties of the Koopman Operator [J].
Arbabi, Hassan ;
Mezic, Igor .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (04) :2096-2126
[2]   Consistent Dynamic Mode Decomposition [J].
Azencot, Omri ;
Yin, Wotao ;
Bertozzi, Andrea .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (03) :1565-1585
[3]  
Bagheri S., 2010, THESIS KTH
[4]   Effects of weak noise on oscillating flows: Linking quality factor, Floquet modes, and Koopman spectrum [J].
Bagheri, Shervin .
PHYSICS OF FLUIDS, 2014, 26 (09)
[5]   Koopman-mode decomposition of the cylinder wake [J].
Bagheri, Shervin .
JOURNAL OF FLUID MECHANICS, 2013, 726 :596-623
[6]   Tracking Twin Boundary Jerky Motion at Nanometer and Microsecond Scales [J].
Bronstein, Emil ;
Toth, Laszlo Zoltan ;
Daroczi, Lajos ;
Beke, Dezso Laszlo ;
Talmon, Ronen ;
Shilo, Doron .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (50)
[7]   A new experimental method for measuring stress-temperature phase diagram in shape memory alloys [J].
Bronstein, Emil ;
Faran, Eilon ;
Shilo, Doron .
SCRIPTA MATERIALIA, 2018, 154 :145-148
[8]   Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition [J].
Brunton, Bingni W. ;
Johnson, Lise A. ;
Ojemann, Jeffrey G. ;
Kutz, J. Nathan .
JOURNAL OF NEUROSCIENCE METHODS, 2016, 258 :1-15
[9]  
Brunton S. L., 2015, J COMPUT DYNAM, V2, P165, DOI DOI 10.3934/JCD.2015002
[10]   Methods for data-driven multiscale model discovery for materials [J].
Brunton, Steven L. ;
Kutz, J. Nathan .
JOURNAL OF PHYSICS-MATERIALS, 2019, 2 (04)