Conjugacy classes and straight elements in Coxeter groups

被引:8
|
作者
Marquis, Timothee [1 ]
机构
[1] UCL, B-1348 Louvain, Belgium
关键词
Coxeter groups; Conjugacy classes in Coxeter groups; Davis complex;
D O I
10.1016/j.jalgebra.2014.03.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let W be a Coxeter group. In this paper, we establish that, up to going to some finite index normal subgroup W-0 of W, any two cyclically reduced expressions of conjugate elements of W-0 only differ by a sequence of braid relations and cyclic shifts. This thus provides a very simple description of conjugacy classes in W-0. As a byproduct of our methods, we also obtain a characterisation of straight elements of W, namely of those elements w is an element of W for which l(w(n)) = n l(w) for any n is an element of Z. In particular, we generalise previous characterisations of straight elements within the class of so-called cyclically fully commutative (CFC) elements, and we give a shorter and more transparent proof that Coxeter elements are straight. (c) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:68 / 80
页数:13
相关论文
共 50 条
  • [1] Bar operators for quasiparabolic conjugacy classes in a Coxeter group
    Marberg, Eric
    JOURNAL OF ALGEBRA, 2016, 453 : 325 - 363
  • [2] On the cyclically fully commutative elements of Coxeter groups
    T. Boothby
    J. Burkert
    M. Eichwald
    D. C. Ernst
    R. M. Green
    M. Macauley
    Journal of Algebraic Combinatorics, 2012, 36 : 123 - 148
  • [3] On the cyclically fully commutative elements of Coxeter groups
    Boothby, T.
    Burkert, J.
    Eichwald, M.
    Ernst, D. C.
    Green, R. M.
    Macauley, M.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2012, 36 (01) : 123 - 148
  • [4] Fully commutative elements in finite and affine Coxeter groups
    Riccardo Biagioli
    Frédéric Jouhet
    Philippe Nadeau
    Monatshefte für Mathematik, 2015, 178 : 1 - 37
  • [5] Fully commutative elements in finite and affine Coxeter groups
    Biagioli, Riccardo
    Jouhet, Frederic
    Nadeau, Philippe
    MONATSHEFTE FUR MATHEMATIK, 2015, 178 (01): : 1 - 37
  • [6] Shi arrangements and low elements in affine Coxeter groups
    Chapelier-Laget, Nathan
    Hohlweg, Christophe
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2025, 77 (02): : 683 - 713
  • [7] Coxeter Groups and Abstract Elementary Classes: The Right-Angled Case
    Hyttinen, Tapani
    Paolini, Gianluca
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2019, 60 (04) : 707 - 731
  • [8] Rationally smooth elements of Coxeter groups and triangle group avoidance
    Edward Richmond
    William Slofstra
    Journal of Algebraic Combinatorics, 2014, 39 : 659 - 681
  • [9] Rationally smooth elements of Coxeter groups and triangle group avoidance
    Richmond, Edward
    Slofstra, William
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 39 (03) : 659 - 681
  • [10] Small roots, low elements, and the weak order in Coxeter groups
    Dyer, Matthew
    Hohlweg, Christophe
    ADVANCES IN MATHEMATICS, 2016, 301 : 739 - 784