Robust stabilization of fractional-order chaotic systems with linear controllers: LMI-based sufficient conditions

被引:21
|
作者
Faieghi, Mohammad Reza [1 ]
Kuntanapreeda, Suwat [2 ]
Delavari, Hadi [3 ]
Baleanu, Dumitru [4 ,5 ,6 ]
机构
[1] Islamic Azad Univ, Miyaneh Branch, Dept Elect Engn, Tehran, Iran
[2] King Mongkuts Univ Technol, Dept Mech & Aerosp Engn, Fac Engn, North Bangkok, Thailand
[3] Hamedan Univ Technol, Dept Elect Engn, Hamadan 65155, Iran
[4] Cankaya Univ, Fac Art & Sci, Dept Math & Comp Sci, Ankara, Turkey
[5] King Abdulaziz Univ, Dept Chem & Mat Engn, Fac Engn, Jeddah, Saudi Arabia
[6] Inst Space Sci, Magurele, Romania
关键词
stability analysis; Fractional-order chaotic system; chaos control; linear interval system; linear matrix inequality; DIFFERENTIAL-EQUATIONS; SYNCHRONIZATION;
D O I
10.1177/1077546312475151
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper is concerned with the problem of robust state feedback controller design to suppress fractional-order chaotic systems. A general class of fractional-order chaotic systems is considered and it is assumed that the systems' equations depend on bounded uncertain parameters. We transform the chaotic system equations into linear interval systems, and a sufficient stabilizability condition is derived in terms of linear matrix inequality (LMI). Then, an appropriate feedback gain is introduced to bring the chaotic states to the origin. Such design will result in a simple but effective controller. Several numerical simulations have been carried out to verify the effectiveness of the theoretic results.
引用
收藏
页码:1042 / 1051
页数:10
相关论文
共 50 条
  • [41] Necessary and sufficient conditions for the dynamic output feedback stabilization of fractional-order systems with order 0 < α < 1
    Ying GUO
    Chong LIN
    Bing CHEN
    Qingguo WANG
    ScienceChina(InformationSciences), 2019, 62 (09) : 205 - 207
  • [42] A new LMI-based procedure for the design of robust damping controllers for power systems
    Ramos, RA
    Alberto, LFC
    Bretas, NG
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 4467 - 4472
  • [43] Robust Fractional-Order Proportional-Integral Observer for Synchronization of Chaotic Fractional-Order Systems
    N'Doye, Ibrahima
    Salama, Khaled Nabil
    Laleg-Kirati, Taous-Meriem
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (01) : 268 - 277
  • [44] Robust Fractional-Order Proportional-Integral Observer for Synchronization of Chaotic Fractional-Order Systems
    Ibrahima N’Doye
    Khaled Nabil Salama
    Taous-Meriem Laleg-Kirati
    IEEE/CAA Journal of Automatica Sinica, 2019, 6 (01) : 268 - 277
  • [45] Linear matrix inequality criteria for robust synchronization of uncertain fractional-order chaotic systems
    Chen, Liping
    Chai, Yi
    Wu, Ranchao
    CHAOS, 2011, 21 (04)
  • [46] An Iterative LMI-Based Reduced-Order Observer Design for Fractional-Order Chaos Synchronization
    Mahdi Pourgholi
    Elham Amini Boroujeni
    Circuits, Systems, and Signal Processing, 2016, 35 : 1855 - 1870
  • [47] An Iterative LMI-Based Reduced-Order Observer Design for Fractional-Order Chaos Synchronization
    Pourgholi, Mahdi
    Boroujeni, Elham Amini
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2016, 35 (06) : 1855 - 1870
  • [48] Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)
    Zhou Ping
    Cheng Yuan-Ming
    Kuang Fei
    CHINESE PHYSICS B, 2010, 19 (09)
  • [49] Sufficient Conditions for Static-Output Feedback Control of Fractional-Order Linear Systems
    Shirazi, M. M.
    Ibrir, S.
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL (ISIC), 2016, : 167 - 172
  • [50] Design of fuzzy state feedback controller for robust stabilization of uncertain fractional-order chaotic systems
    Huang, Xia
    Wang, Zhen
    Li, Yuxia
    Lu, Junwei
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (12): : 5480 - 5493