On an explicit form of the Green function of the third boundary value problem for the Poisson equation in a circle

被引:29
作者
Sadybekov, Makhmud A. [1 ]
Torebek, Berikbol T. [2 ]
Turmetov, Batirkhan Kh [2 ]
机构
[1] Inst Math & Math Modeling, Alma Ata 050010, Kazakhstan
[2] Akhmet Yasawi Int Kazakh Turkish Univ, Turkistan 161200, Kazakhstan
来源
INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2014) | 2014年 / 1611卷
关键词
Poisson equation; Robin problem; Harmonic function; Fundamental solution of the Laplace equation; Green's function; Boundary value problems;
D O I
10.1063/1.4893843
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is devoted to the investigation of questions about constructing the explicit form of the Green's function of the Robin problem. For constructing this function we use the representation of the fundamental solution of the Laplace equation in the form of a series. An integral representation of the Green function is obtained and for some values of the parameters, the problem is presented in elementary functions.
引用
收藏
页码:255 / 260
页数:6
相关论文
共 10 条
[1]  
Begehr H, 2010, EURASIAN MATH J, V1, P17
[2]   How to find harmonic Green functions in the plane [J].
Begehr, H. ;
Vaitekhovich, T. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (12) :1169-1181
[3]   HARMONIC BOUNDARY VALUE PROBLEMS IN HALF DISC AND HALF RING [J].
Begehr, Heinrich ;
Vaitekhovich, Tatyana .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2009, 40 (02) :251-282
[4]  
Begehr H, 2006, MATEMATICHE, V61, P395
[5]  
Brychkov Yu. A., 2003, INTEGRALS SERIES, V1
[6]   Green function representation in the Dirichlet problem for polyharmonic equations in a ball [J].
Kal'menov, T. Sh. ;
Koshanov, B. D. ;
Nemchenko, M. Yu. .
DOKLADY MATHEMATICS, 2008, 78 (01) :528-530
[7]   On a new method for constructing the Green function of the Dirichlet problem for the polyharmonic equation [J].
Kal'menov, T. Sh. ;
Suragan, D. .
DIFFERENTIAL EQUATIONS, 2012, 48 (03) :441-445
[8]   Green function representation for the Dirichlet problem of the polyharmonic equation in a sphere [J].
Kalmenov, T. Sh. ;
Koshanov, B. D. ;
Nemchenko, M. Y. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2008, 53 (02) :177-183
[9]  
Koshlyakov N. S., 1970, DIFFERENTIAL EQUATIO
[10]  
Polianin AD, 2002, HDB LINEAR PARTIAL D