Non-integrability by discrete quadratures

被引:2
作者
Casale, Guy [1 ]
Roques, Julien [2 ]
机构
[1] Univ Rennes 1, UMR 6625, IRMAR, F-35042 Rennes, France
[2] Univ Grenoble 1, CNRS, UMR 5582, Inst Fourier, F-38402 St Martin Dheres, France
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2014年 / 687卷
关键词
DIFFERENTIAL GALOIS THEORY; PAINLEVE-III EQUATION; INTEGRABILITY; SYSTEMS;
D O I
10.1515/crelle-2012-0054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a necessary condition for integrability by discrete quadratures of systems of difference equations: the discrete variational equations along algebraic solutions must have virtually solvable Galois groups. This necessary condition a la Morales and Ramis is used in order to prove that q-analogues of Painleve I and Painleve III equations are not integrable by discrete quadratures.
引用
收藏
页码:87 / 112
页数:26
相关论文
共 67 条
[1]   q-hypergeometric solutions of q-difference equations [J].
Abramov, SA ;
Paule, P ;
Petkovsek, M .
DISCRETE MATHEMATICS, 1998, 180 (1-3) :3-22
[2]   Non-commutative differentials and differential or difference Galois theory [J].
André, Y .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2001, 34 (05) :685-739
[3]  
[Anonymous], MEM AM MATH SOC
[4]  
[Anonymous], 1966, DIFFERENTIAL ALGEBRA
[5]  
[Anonymous], SPRINGER SERIES NONL
[6]  
[Anonymous], 1980, MATH LECT NOTE SERIE
[7]  
[Anonymous], 1973, PURE APPL MATH
[8]  
Artin M., 1968, Inventiones Math, V5, P277, DOI DOI 10.1007/BF01389777
[9]   Algebraic entropy [J].
Bellon, MP ;
Viallet, CM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 204 (02) :425-437
[10]  
Birkhoff G.D, 1966, Amer. Math. Soc. Colloq. Publ., VIX