Local well-posedness for the chemotaxis-Navier-Stokes equations in Besov spaces

被引:35
|
作者
Zhang, Qian [1 ]
机构
[1] Hebei Univ, Sch Math & Comp Sci, Baoding 071002, Peoples R China
关键词
NONLINEAR DIFFUSION; GLOBAL EXISTENCE; EULER EQUATIONS; BLOW-UP; MODEL; BOUNDEDNESS; SYSTEM;
D O I
10.1016/j.nonrwa.2013.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the local well-posedness for the chemotaxis-Navier-Stokes equations in R-d, d = 2, 3. By fully using the advantage of weighted function generated by heat kernel and Fourier localization technique, we obtain the existence and uniqueness of smooth solutions in Besov spaces. More importantly, we show a Beale-Kato-Majda type blow-up criterion with the help of a logarithmic inequality. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:89 / 100
页数:12
相关论文
共 50 条
  • [41] On the existence and uniqueness of solution to a stochastic Chemotaxis-Navier-Stokes model
    Hausenblas, Erika
    Moghomye, Boris Jidjou
    Razafimandimby, Paul Andre
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 170
  • [42] Global (weak) solution of the chemotaxis-Navier-Stokes equations with non-homogeneous boundary conditions and logistic growth
    Braukhoff, Marcel
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (04): : 1013 - 1039
  • [43] Local well-posedness in critical spaces for the compressible MHD equations
    Bian, Dongfen
    Yuan, Baoquan
    APPLICABLE ANALYSIS, 2016, 95 (02) : 239 - 269
  • [44] CONVERGENCE RATES OF SOLUTIONS FOR A TWO-SPECIES CHEMOTAXIS-NAVIER-STOKES SYTSTEM WITH COMPETITIVE KINETICS
    Jin, Hai-Yang
    Xiang, Tian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (04): : 1919 - 1942
  • [45] GLOBAL EXISTENCE OF WEAK SOLUTIONS FOR THE 3D AXISYMMETRIC CHEMOTAXIS-NAVIER-STOKES EQUATIONS WITH NONLINEAR DIFFUSION
    Chen, Xiaoyu
    Zhao, Jijie
    Zhang, Qian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (09) : 4489 - 4522
  • [46] Ill-posedness for the compressible Navier-Stokes equations under barotropic condition in limiting Besov spaces
    Iwabuchi, Tsukasa
    Ogawa, Takayoshi
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2022, 74 (02) : 353 - 394
  • [47] On the well-posedness of the ideal incompressible viscoelastic flow in the critical Besov spaces
    Qiu, Hua
    Yao, Zheng-an
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (02) : 257 - 275
  • [48] Local well-posedness of the vacuum free boundary of 3-D compressible Navier-Stokes equations
    Gui, Guilong
    Wang, Chao
    Wang, Yuxi
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (05)
  • [49] Global Well-posedness for the Non-viscous MHD Equations with Magnetic Diffusion in Critical Besov Spaces
    Ye, Wei Kui
    Yin, Zhao Yang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (09) : 1493 - 1511
  • [50] Error estimates for the finite element method of the chemotaxis-Navier-Stokes equations
    Li, Zhenzhen
    Xiao, Liuchao
    Li, Minghao
    Chen, Hongru
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (04) : 3039 - 3065