Local well-posedness for the chemotaxis-Navier-Stokes equations in Besov spaces

被引:35
|
作者
Zhang, Qian [1 ]
机构
[1] Hebei Univ, Sch Math & Comp Sci, Baoding 071002, Peoples R China
关键词
NONLINEAR DIFFUSION; GLOBAL EXISTENCE; EULER EQUATIONS; BLOW-UP; MODEL; BOUNDEDNESS; SYSTEM;
D O I
10.1016/j.nonrwa.2013.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the local well-posedness for the chemotaxis-Navier-Stokes equations in R-d, d = 2, 3. By fully using the advantage of weighted function generated by heat kernel and Fourier localization technique, we obtain the existence and uniqueness of smooth solutions in Besov spaces. More importantly, we show a Beale-Kato-Majda type blow-up criterion with the help of a logarithmic inequality. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:89 / 100
页数:12
相关论文
共 50 条
  • [31] Global Well-Posedness and Long Time Decay of Fractional Navier-Stokes Equations in Fourier-Besov Spaces
    Xiao, Weiliang
    Chen, Jiecheng
    Fan, Dashan
    Zhou, Xuhuan
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [32] GLOBAL WELL-POSEDNESS FOR FRACTIONAL NAVIER-STOKES EQUATIONS IN VARIABLE EXPONENT FOURIER-BESOV-MORREY SPACES
    Muhammad Zainul ABIDIN
    陈杰诚
    ActaMathematicaScientia, 2021, 41 (01) : 164 - 176
  • [33] Global well-posedness for fractional Navier-Stokes equations in variable exponent Fourier-Besov-Morrey spaces
    Muhammad Zainul Abidin
    Jiecheng Chen
    Acta Mathematica Scientia, 2021, 41 : 164 - 176
  • [34] Local well-posedness for the quasi-geostrophic equations in Besov–Lorentz spaces
    Qian Zhang
    Yehua Zhang
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 53 - 70
  • [35] Local Well-Posedness and Blowup Criterion of the Boussinesq Equations in Critical Besov Spaces
    Liu Xiaofeng
    Wang, Meng
    Zhang, Zhifei
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2010, 12 (02) : 280 - 292
  • [36] Local Well-Posedness and Blowup Criterion of the Boussinesq Equations in Critical Besov Spaces
    Liu Xiaofeng
    Meng Wang
    Zhifei Zhang
    Journal of Mathematical Fluid Mechanics, 2010, 12 : 280 - 292
  • [37] Well-posedness of the generalized Navier–Stokes equations with damping
    Liu, Hui
    Lin, Lin
    Sun, Chengfeng
    Applied Mathematics Letters, 2021, 121
  • [38] WELL-POSEDNESS OF THE HYDROSTATIC NAVIER-STOKES EQUATIONS
    Gerard-Varet, David
    Masmoudi, Nader
    Vicol, Vlad
    ANALYSIS & PDE, 2020, 13 (05): : 1417 - 1455
  • [39] Well-posedness of the Navier-Stokes-Maxwell equations
    Germain, Pierre
    Ibrahim, Slim
    Masmoudi, Nader
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2014, 144 (01) : 71 - 86
  • [40] Local well-posedness of the compressible Navier-Stokes-Smoluchowski equations with vacuum
    Yang, Xiuhui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 485 (10)