Local well-posedness for the chemotaxis-Navier-Stokes equations in Besov spaces

被引:35
|
作者
Zhang, Qian [1 ]
机构
[1] Hebei Univ, Sch Math & Comp Sci, Baoding 071002, Peoples R China
关键词
NONLINEAR DIFFUSION; GLOBAL EXISTENCE; EULER EQUATIONS; BLOW-UP; MODEL; BOUNDEDNESS; SYSTEM;
D O I
10.1016/j.nonrwa.2013.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the local well-posedness for the chemotaxis-Navier-Stokes equations in R-d, d = 2, 3. By fully using the advantage of weighted function generated by heat kernel and Fourier localization technique, we obtain the existence and uniqueness of smooth solutions in Besov spaces. More importantly, we show a Beale-Kato-Majda type blow-up criterion with the help of a logarithmic inequality. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:89 / 100
页数:12
相关论文
共 50 条
  • [21] The Estimate of Lifespan and Local Well-Posedness for the Nonresistive MHD Equations in Homogeneous Besov Spaces
    Luo, Wei
    Ye, Weikui
    Yin, Zhaoyang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, : 8994 - 9006
  • [22] Global existence of weak solutions for the 3D chemotaxis-Navier-Stokes equations
    He, Haibin
    Zhang, Qian
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 35 : 336 - 349
  • [23] Local well-posedness for the quasi-geostrophic equations in Besov-Lorentz spaces
    Zhang, Qian
    Zhang, Yehua
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (01) : 53 - 70
  • [24] The rates of convergence for the chemotaxis-Navier-Stokes equations in a strip domain
    Wu, Jie
    Lin, Hongxia
    APPLICABLE ANALYSIS, 2022, 101 (03) : 952 - 969
  • [25] Well-posedness for the Navier-Stokes equations with data in homogeneous Sobolev-Lorentz spaces
    Khai, D. Q.
    Tri, N. M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 149 : 130 - 145
  • [26] Global well-posedness of compressible bipolar Navier-Stokes-Poisson equations
    Lin, Yi Quan
    Hao, Cheng Chun
    Li, Hai Liang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (05) : 925 - 940
  • [27] On the Ill-posedness for the Navier-Stokes Equations in the Weakest Besov Spaces
    Yu, Yanghai
    Li, Jinlu
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (02)
  • [28] On the chemotactic limit of the incompressible chemotaxis-Navier-Stokes equations in R2
    Wang, Peiguang
    Wu, Yonghong
    Zhang, Qian
    APPLIED MATHEMATICS LETTERS, 2024, 157
  • [29] GLOBAL EXISTENCE OF ALMOST ENERGY SOLUTION TO THE TWO-DIMENSIONAL CHEMOTAXIS-NAVIER-STOKES EQUATIONS WITH PARTIAL DIFFUSION
    Meng, Laiqing
    Yuan, Jia
    Zheng, Xiaoxin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (06) : 3413 - 3441
  • [30] Global well-posedness of coupled Navier-Stokes and Darcy equations
    Cui, Meiying
    Dong, Wenchao
    Guo, Zhenhua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 388 : 82 - 111