Local well-posedness for the chemotaxis-Navier-Stokes equations in Besov spaces

被引:35
|
作者
Zhang, Qian [1 ]
机构
[1] Hebei Univ, Sch Math & Comp Sci, Baoding 071002, Peoples R China
关键词
NONLINEAR DIFFUSION; GLOBAL EXISTENCE; EULER EQUATIONS; BLOW-UP; MODEL; BOUNDEDNESS; SYSTEM;
D O I
10.1016/j.nonrwa.2013.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the local well-posedness for the chemotaxis-Navier-Stokes equations in R-d, d = 2, 3. By fully using the advantage of weighted function generated by heat kernel and Fourier localization technique, we obtain the existence and uniqueness of smooth solutions in Besov spaces. More importantly, we show a Beale-Kato-Majda type blow-up criterion with the help of a logarithmic inequality. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:89 / 100
页数:12
相关论文
共 50 条
  • [1] GLOBAL WELL-POSEDNESS FOR THE TWO-DIMENSIONAL INCOMPRESSIBLE CHEMOTAXIS-NAVIER-STOKES EQUATIONS
    Zhang, Qian
    Zheng, Xiaoxin
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (04) : 3078 - 3105
  • [2] Global well-posedness and asymptotic behavior in Besov-Morrey spaces for chemotaxis-Navier-Stokes fluids
    Ferreira, Lucas C. F.
    Postigo, Monisse
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (06)
  • [3] GLOBAL SOLUTIONS TO CHEMOTAXIS-NAVIER-STOKES EQUATIONS IN CRITICAL BESOV SPACES
    Yang, Minghua
    Fu, Zunwei
    Sun, Jinyi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08): : 3427 - 3460
  • [4] Global well-posedness of axisymmetric solution to the 3D axisymmetric chemotaxis-Navier-Stokes equations with logistic source
    Zhang, Qian
    Zheng, Xiaoxin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 274 : 576 - 612
  • [5] Global well-posedness for the 2D incompressible four-component chemotaxis-Navier-Stokes equations
    Zhang, Qian
    Wang, Peiguang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (02) : 1656 - 1692
  • [6] Well-posedness of Keller-Segel-Navier-Stokes equations with fractional diffusion in Besov spaces
    Jiang, Ziwen
    Wang, Lizhen
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):
  • [7] Well-posedness for the chemotaxis-Navier-Stokes system of consumption type with logistic source
    Bie, Qunyi
    Fang, Hui
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (02):
  • [8] Well-posedness and time decay of fractional Keller-Segel-Navier-Stokes equations in homogeneous Besov spaces
    Jiang, Ziwen
    Wang, Lizhen
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (08) : 3107 - 3142
  • [9] Global well-posedness and asymptotic behavior for Navier-Stokes-Coriolis equations in homogeneous Besov spaces
    Ferreira, Lucas C. F.
    Angulo-Castillo, Vladimir
    ASYMPTOTIC ANALYSIS, 2019, 112 (1-2) : 37 - 58
  • [10] On the global well-posedness for the incompressible four-component chemotaxis-Navier-Stokes equations with gradient-dependent flux limitation in R2
    Bao, He
    Jia, Yaoning
    Zhang, Qian
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 81