Local well-posedness for the chemotaxis-Navier-Stokes equations in Besov spaces

被引:35
|
作者
Zhang, Qian [1 ]
机构
[1] Hebei Univ, Sch Math & Comp Sci, Baoding 071002, Peoples R China
关键词
NONLINEAR DIFFUSION; GLOBAL EXISTENCE; EULER EQUATIONS; BLOW-UP; MODEL; BOUNDEDNESS; SYSTEM;
D O I
10.1016/j.nonrwa.2013.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the local well-posedness for the chemotaxis-Navier-Stokes equations in R-d, d = 2, 3. By fully using the advantage of weighted function generated by heat kernel and Fourier localization technique, we obtain the existence and uniqueness of smooth solutions in Besov spaces. More importantly, we show a Beale-Kato-Majda type blow-up criterion with the help of a logarithmic inequality. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:89 / 100
页数:12
相关论文
共 50 条