The signal of the gravitational wave background and the angular correlation of its energy density

被引:46
|
作者
Cusin, Giulia [1 ,2 ]
Pitrou, Cyril [3 ]
Uzan, Jean-Philippe [3 ]
机构
[1] Univ Geneva, Dept Phys Theor, 24 Quai Ansermet, CH-1211 Geneva 4, Switzerland
[2] Univ Geneva, Ctr Astroparticle Phys, 24 Quai Ansermet, CH-1211 Geneva 4, Switzerland
[3] Sorbonne Univ, CNRS, UMR 7095, Inst Astrophys Paris,Inst Lagrange Paris, 98 Bis, F-75014 Paris, France
基金
瑞士国家科学基金会;
关键词
BLACK-HOLES; ANISOTROPIES; RADIATION;
D O I
10.1103/PhysRevD.97.123527
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The gravitational wave radiation emitted by all, resolved and unresolved, astrophysical sources in the observable universe generates a stochastic background. This background has a directional dependence inherited from the inhomogeneities of the matter distribution. This article proposes a new and independent derivation of the angular dependence of its energy density by focusing on the total gravitational wave signal produced by an ensemble of incoherent sources. This approach clarifies the origin of the angular correlation and the relation between the gravitational wave signal that can be measured by interferometers and the energy density of the stochastic background.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Unraveling the CMB lack-of-correlation anomaly with the cosmological gravitational wave background
    Galloni, Giacomo
    Ballardini, Mario
    Bartolo, Nicola
    Gruppuso, Alessandro
    Pagano, Luca
    Ricciardone, Angelo
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (10):
  • [32] Scale genesis by dark matter and its gravitational wave signal
    Kang, Zhaofeng
    Zhu, Jiang
    PHYSICAL REVIEW D, 2020, 102 (05):
  • [33] COSMIC BACKGROUND GRAVITATIONAL-WAVE RADIATION AND PROSPECTS FOR ITS DETECTION
    ANDERSON, AJ
    RELATIVISTIC GRAVITATION, 1989, 9 : 103 - 105
  • [34] The Robinson Gravitational Wave Background Telescope (BICEP): a bolometric large angular scale CMB polarimeter
    Yoon, K. W.
    Ade, P. A. R.
    Barkats, D.
    Battle, J. O.
    Bierman, E. M.
    Bock, J. J.
    Brevik, J. A.
    Chiang, H. C.
    Crites, A.
    Dowell, C. D.
    Duband, L.
    Griffin, G. S.
    Hivon, E. F.
    Holzapfel, W. L.
    Hristov, V. V.
    Keating, B. G.
    Kovac, J. M.
    Kuo, C. L.
    Lange, A. E.
    Leitch, E. M.
    Mason, P. V.
    Nguyen, H. T.
    Ponthieu, N.
    Takahashi, Y. D.
    Renbarger, T.
    Weintraub, L. C.
    Woolsey, D.
    MILLIMETER AND SUBMILLIMETER DETECTORS AND INSTRUMENTATION FOR ASTRONOMY III, 2006, 6275
  • [35] Correction of cosine oscillation to the improved correlation method of estimating the amplitude of gravitational background signal
    巫伟皇
    田苑
    薛超
    罗杰
    邵成刚
    Chinese Physics B, 2017, 26 (04) : 126 - 135
  • [36] Correction of cosine oscillation to the improved correlation method of estimating the amplitude of gravitational background signal
    Wu, Wei-Huang
    Tian, Yuan
    Xue, Chao
    Luo, Jie
    Shao, Cheng-Gang
    CHINESE PHYSICS B, 2017, 26 (04)
  • [37] Background for gravitational wave signal at LISA from refractive index of solar wind plasma
    Smetana, Adam
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 499 (01) : L77 - L81
  • [38] Consistency of the Parkes Pulsar Timing Array Signal with a Nanohertz Gravitational-wave Background
    Goncharov, Boris
    Thrane, Eric
    Shannon, Ryan M.
    Harms, Jan
    Bhat, N. D. Ramesh
    Hobbs, George
    Kerr, Matthew
    Manchester, Richard N.
    Reardon, Daniel J.
    Russell, Christopher J.
    Zhu, Xing-Jiang
    Zic, Andrew
    ASTROPHYSICAL JOURNAL LETTERS, 2022, 932 (02)
  • [39] Gravitational wave background in inflationary models
    Polarski, D
    COSMOLOGY AND PARTICLE PHYSICS, 2001, 555 : 495 - 498
  • [40] Mapping the gravitational-wave background
    Cornish, NJ
    CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (20) : 4277 - 4291