General quantum antibrackets

被引:21
作者
Batalin, IA [1 ]
Marnelius, R [1 ]
机构
[1] Chalmers Univ Technol, Inst Theoret Phys, S-41296 Gothenburg, Sweden
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1007/BF02557237
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The recently introduced quantum antibracket is further generalized such that the odd operator Q can be arbitrary. We give exact formulas for quantum antibrackets of arbitrary higher orders and for their generalized Jacobi identities. We review applications of the quantum antibrackets to the BV and BFV-BRST quantizations and include some new aspects.
引用
收藏
页码:1115 / 1132
页数:18
相关论文
共 23 条
[1]   Open groups of constraints. Integrating arbitrary involutions [J].
Batalin, I ;
Marnelius, R .
PHYSICS LETTERS B, 1998, 441 (1-4) :243-249
[2]   Quantum antibrackets [J].
Batalin, I ;
Marnelius, R .
PHYSICS LETTERS B, 1998, 434 (3-4) :312-320
[3]   COVARIANT QUANTIZATION OF GAUGE-THEORIES IN THE FRAMEWORK OF EXTENDED BRST SYMMETRY [J].
BATALIN, IA ;
LAVROV, PM ;
TYUTIN, IV .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (06) :1487-1493
[4]   ON POSSIBLE GENERALIZATIONS OF FIELD-ANTIFIELD FORMALISM [J].
BATALIN, IA ;
TYUTIN, IV .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (13) :2333-2350
[5]   A GENERALIZED CANONICAL FORMALISM AND QUANTIZATION OF REDUCIBLE GAUGE-THEORIES [J].
BATALIN, IA ;
FRADKIN, ES .
PHYSICS LETTERS B, 1983, 122 (02) :157-164
[6]   Gauge independence of the Lagrangian path integral in a higher-order formalism [J].
Batalin, IA ;
Bering, K ;
Damgaard, PH .
PHYSICS LETTERS B, 1996, 389 (04) :673-676
[7]   QUASIGROUP CONSTRUCTION AND 1ST CLASS CONSTRAINTS [J].
BATALIN, IA .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (09) :1837-1850
[8]   TRIPLECTIC QUANTIZATION - A GEOMETRICALLY COVARIANT DESCRIPTION OF THE SP(2)-SYMMETRICAL LAGRANGIAN-FORMALISM [J].
BATALIN, IA ;
MARNELIUS, R ;
SEMIKHATOV, AM .
NUCLEAR PHYSICS B, 1995, 446 (1-2) :249-285
[9]   GAUGE ALGEBRA AND QUANTIZATION [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICS LETTERS B, 1981, 102 (01) :27-31
[10]   OPERATOR QUANTIZATION OF RELATIVISTIC DYNAMICAL-SYSTEMS SUBJECT TO 1ST CLASS CONSTRAINTS [J].
BATALIN, IA ;
FRADKIN, ES .
PHYSICS LETTERS B, 1983, 128 (05) :303-308