Two Methods to Discretize the Wave Equation in Time and Space

被引:0
作者
Suzuki, Tomoyu [1 ]
Tokutomi, Yuichi [1 ]
Hori, Noriyuki [1 ]
Nguyen-Van, Triet [2 ]
Kawai, Shin [1 ]
机构
[1] Univ Tsukuba, Intelligent & Mech Interact Syst, 1-1-1 Tennoudai, Tsukuba, Ibaraki 3058573, Japan
[2] Oyama Coll, Natl Inst Technol, 771 Nakakuki, Oyama, Tochigi 3230806, Japan
来源
2022 10TH INTERNATIONAL CONFERENCE ON CONTROL, MECHATRONICS AND AUTOMATION (ICCMA 2022) | 2022年
关键词
exact-discretization-method; wave equation; digital control; variable separation; d'Alembert solution; discrete model; MODELS;
D O I
10.1109/ICCMA56665.2022.10011619
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study proposes two methods to derive exact discrete-time and space models for the wave equation as an example of a hyperbolic linear partial differential equation. The first method is based on the separation of variables method, an extension of the previous studies, and discretizes time and space separately. This method can accurately discretize when the initial conditions are expressed as a sum of sinusoidal functions. The second method is based on d'Alembert's method, which can be used strictly with arbitrary initial conditions, and discretizes time and space simultaneously. However, this method requires that the space be one-dimensional. Both models can be computed online, and their use is expected to have applications in control system design.
引用
收藏
页码:148 / 153
页数:6
相关论文
共 50 条
[31]   The solution of a wave equation in two-dimension anti-de Sitter space [J].
Arkhipov, V. V. ;
Kystaubaeva, A. Zh. .
BULLETIN OF THE UNIVERSITY OF KARAGANDA-PHYSICS, 2015, 3 (79) :74-78
[32]   Energy decay estimates for the dissipative wave equation with space-time dependent potential [J].
Kenigson, Jessica S. ;
Kenigson, Jonathan J. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (01) :48-62
[33]   The scalar wave equation in a non-commutative spherically symmetric space-time [J].
Di Grezia, Elisabetta ;
Esposito, Giampiero ;
Miele, Gennaro .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2008, 5 (01) :33-47
[34]   HERMITE METHODS FOR THE SCALAR WAVE EQUATION [J].
Appelo, Daniel ;
Hagstrom, Thomas ;
Vargas, Arturo .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06) :A3902-A3927
[35]   On the boundary conditions for EG methods applied to the two-dimensional wave equation system [J].
Lukácová-Medvid'ová, M ;
Warnecke, G ;
Zahaykah, Y .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2004, 84 (04) :237-251
[36]   The Wave Equation on Singular Space-Times [J].
James D.E. Grant ;
Eberhard Mayerhofer ;
Roland Steinbauer .
Communications in Mathematical Physics, 2009, 285 :399-420
[37]   Stochastic solution to a time-fractional attenuated wave equation [J].
Meerschaert, Mark M. ;
Straka, Peter ;
Zhou, Yuzhen ;
McGough, Robert J. .
NONLINEAR DYNAMICS, 2012, 70 (02) :1273-1281
[38]   Discretization of the Wave Equation Using Continuous Elements in Time and a Hybridizable Discontinuous Galerkin Method in Space [J].
Griesmaier, Roland ;
Monk, Peter .
JOURNAL OF SCIENTIFIC COMPUTING, 2014, 58 (02) :472-498
[39]   Discretization of the Wave Equation Using Continuous Elements in Time and a Hybridizable Discontinuous Galerkin Method in Space [J].
Roland Griesmaier ;
Peter Monk .
Journal of Scientific Computing, 2014, 58 :472-498
[40]   An ultraweak space-time variational formulation for the wave equation: Analysis and efficient numerical solution [J].
HENNING, J. U. L. I. A. N. ;
PALITTA, D. A. V. I. D. E. ;
SIMONCINI, V. A. L. E. R. I. A. ;
URBAN, K. A. R. S. T. E. N. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2022, 56 (04) :1173-1198