Evaluation of a thermo-tolerant acidophilic alga, Galdieria sulphuraria, for nutrient removal from urban wastewaters

被引:82
作者
Selvaratnam, T. [1 ]
Pegallapati, A. K. [1 ]
Montelya, F. [1 ]
Rodriguez, G. [1 ]
Nirmalakhandan, N. [1 ]
Van Voorhies, W. [2 ]
Lammers, P. J. [3 ]
机构
[1] New Mexico State Univ, Dept Civil Engn, Las Cruces, NM 88003 USA
[2] New Mexico State Univ, Program Mol Biol, Las Cruces, NM 88003 USA
[3] New Mexico State Univ, Energy Res Lab, Las Cruces, NM 88003 USA
基金
美国国家科学基金会;
关键词
Galdieria sulphuraria; Nutrient removal; Algal wastewater treatment; Biomass yield; WASTE-WATER TREATMENT; BIOMASS; ACCUMULATION; CULTURE;
D O I
10.1016/j.biortech.2014.01.075
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Nutrient removal from primary wastewater effluent was tested using Galdieria sulphuraria, an acidophilic and moderately thermophilic alga. Biomass yield recorded in this study (27.42 g biomass per g nitrogen removed) is higher than the average reported in the literature (25.75 g g(-1)) while, the theoretical yield estimated from the empirical molecular formula of algal biomass is 15.8 g g(-1). Seven-day removal efficiencies were 88.3% for ammoniacal-nitrogen and 95.5% for phosphates; corresponding removal rates were 4.85 and 1.21 mg L-1 d(-1). Although these rates are lower than the average literature values for other strains (6.36 and 1.34 mg L-1 d(-1), respectively), potential advantages of G. sulphuraria for accomplishing energy-positive nutrient removal are highlighted. Feasibility of growing G. sulphuraria outdoors at densities higher than in high-rate oxidation ponds is also demonstrated. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:395 / 399
页数:5
相关论文
共 20 条
  • [1] Andersen R.A., 2005, Algal Culturing Techniques, P578
  • [2] [Anonymous], 2013, EPA821R13001, V1
  • [3] Concomitant extraction of bio-oil and value added polysaccharides from Chlorella sorokiniana using a unique sequential hydrothermal extraction technology
    Chakraborty, Moumita
    Miao, Chao
    McDonald, Armando
    Chen, Shulin
    [J]. FUEL, 2012, 95 (01) : 63 - 70
  • [4] From waste to energy: Microalgae production in wastewater and glycerol
    Dominguez Cabanelas, Iago Teles
    Arbib, Zouhayr
    Chinalia, Fabio A.
    Souza, Carolina Oliveira
    Perales, Jose A.
    Almeida, Paulo Fernando
    Druzian, Janice Izabel
    Nascimento, Iracema Andrade
    [J]. APPLIED ENERGY, 2013, 109 : 283 - 290
  • [5] Catalytic hydrothermal gasification of biomass
    Elliott, Douglas C.
    [J]. BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2008, 2 (03): : 254 - 265
  • [6] Determination of the Internal Chemical Energy of Wastewater
    Heidrich, E. S.
    Curtis, T. P.
    Dolfing, J.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (02) : 827 - 832
  • [7] Influence of Exogenous CO2 on Biomass and Lipid Accumulation of Microalgae Auxenochlorella protothecoides Cultivated in Concentrated Municipal Wastewater
    Hu, Bing
    Min, Min
    Zhou, Wenguang
    Li, Yecong
    Mohr, Michael
    Cheng, Yanling
    Lei, Hanwu
    Liu, Yuhuan
    Lin, Xiangyang
    Chen, Paul
    Ruan, Roger
    [J]. APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2012, 166 (07) : 1661 - 1673
  • [8] Domestic Wastewater Treatment as a Net Energy Producer-Can This be Achieved?
    McCarty, Perry L.
    Bae, Jaeho
    Kim, Jeonghwan
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (17) : 7100 - 7106
  • [9] OSWALD WJ, 1953, SEWAGE IND WASTES, V25, P692
  • [10] Wastewater treatment high rate algal ponds for biofuel production
    Park, J. B. K.
    Craggs, R. J.
    Shilton, A. N.
    [J]. BIORESOURCE TECHNOLOGY, 2011, 102 (01) : 35 - 42