Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites

被引:156
作者
Gao, Yuqing [1 ,2 ]
Picot, Olivier T. [1 ,2 ,3 ]
Bilotti, Emiliano [1 ,2 ,3 ]
Peijs, Ton [1 ,2 ,3 ]
机构
[1] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
[2] Queen Mary Univ London, Mat Res Inst, Mile End Rd, London E1 4NS, England
[3] Queen Mary Univ London, Nanoforce Technol Ltd, Joseph Priestley Bldg,Mile End Rd, London E1 4NS, England
基金
英国工程与自然科学研究理事会;
关键词
Graphene; Composites; Crystallinity; Annealing; Mechanical properties; Electrical properties; Thermal properties; WALLED CARBON NANOTUBES; GRAPHENE OXIDE; MECHANICAL-PROPERTIES; CRYSTALLIZATION BEHAVIOR; ELECTRICAL-CONDUCTIVITY; POLYMER NANOCOMPOSITES; RAMAN-SPECTROSCOPY; POLYLACTIC ACID; COMPOSITES; GRAPHITE;
D O I
10.1016/j.eurpolymj.2016.10.045
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(lactic acid) (PLA) composites reinforced with two types of graphite nanoplatelets varying in lateral size - small (GNP-S) and large (GNP-L)- were produced via melt compounding. Morphological, thermal, mechanical, and electrical properties were investigated to reveal the influence of particle size. Electron microscopy and X-ray diffraction showed well dispersed small GNP-S particles up to 10 wt.% loading, while large GNP-L particles started to agglomerate at loadings >= 7 wt.%. Addition of GNPs improved the Young's modulus of the composites by 10% and 24% for small and large nanoplatelets, respectively, the latter being among the highest reported for PLA/GNP systems. For GNP-L this larger increase could be partly explained by an increase in crystallinity while no such effect was observed for GNP-S. Conversely, GNP-L systems showed embrittlement while polymer yield was preserved for GNP-S. GNP-L resulted in a lower electrical percolation threshold. However, systems based on smaller GNP-S particles showed significantly enhanced conductivity and a reduction in percolation threshold after annealing. Heat distortion temperature (HDT) increased by up to 13 degrees C, with large GNP-L showing the slightly larger increase. Crown Copyright (C) 2016 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:117 / 131
页数:15
相关论文
共 62 条
[1]   Destruction and formation of a conductive carbon nanotube network in polymer melts:: In-line experiments [J].
Alig, Ingo ;
Lellinger, Dirk ;
Engel, Martin ;
Skipa, Tetyana ;
Poetschke, Petra .
POLYMER, 2008, 49 (07) :1902-1909
[2]   Toughening polylactide [J].
Anderson, Kelly S. ;
Schreck, Kathleen M. ;
Hillmyer, Marc A. .
POLYMER REVIEWS, 2008, 48 (01) :85-108
[3]  
[Anonymous], 2014, HEAT DEFLECTION TEMP
[4]   A review and analysis of electrical percolation in carbon nanotube polymer composites [J].
Bauhofer, Wolfgang ;
Kovacs, Josef Z. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (10) :1486-1498
[5]   Advances in the properties of polylactides based materials: A review [J].
Bhardwaj, Rahul ;
Mohanty, Amar K. .
JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2007, 1 (02) :191-209
[6]   Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: The effect on electrical conductivity and tuneable sensing behaviour [J].
Bilotti, Emiliano ;
Zhang, Han ;
Deng, Hua ;
Zhang, Rui ;
Fu, Qiang ;
Peijs, Ton .
COMPOSITES SCIENCE AND TECHNOLOGY, 2013, 74 :85-90
[7]   Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres [J].
Bilotti, Emiliano ;
Zhang, Rui ;
Deng, Hua ;
Baxendale, Mark ;
Peijs, Ton .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (42) :9449-9455
[8]   Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites [J].
Cadek, M ;
Coleman, JN ;
Barron, V ;
Hedicke, K ;
Blau, WJ .
APPLIED PHYSICS LETTERS, 2002, 81 (27) :5123-5125
[9]   Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies [J].
Cancado, L. G. ;
Jorio, A. ;
Martins Ferreira, E. H. ;
Stavale, F. ;
Achete, C. A. ;
Capaz, R. B. ;
Moutinho, M. V. O. ;
Lombardo, A. ;
Kulmala, T. S. ;
Ferrari, A. C. .
NANO LETTERS, 2011, 11 (08) :3190-3196
[10]   Reinforcement of graphene nanoplatelets on plasticized poly(lactic acid) nanocomposites: Mechanical, thermal, morphology, and antibacterial properties [J].
Chieng, Buong Woei ;
Ibrahim, Nor Azowa ;
Yunus, Wan Md Zin Wan ;
Hussein, Mohd Zobir ;
Then, Yoon Yee ;
Loo, Yuet Ying .
JOURNAL OF APPLIED POLYMER SCIENCE, 2015, 132 (11)