A General Class of Free Boundary Problems for Fully Nonlinear Elliptic Equations

被引:35
作者
Figalli, Alessio [1 ]
Shahgholian, Henrik [2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] KTH Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
VISCOSITY SOLUTIONS; REGULARITY;
D O I
10.1007/s00205-014-0734-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the fully nonlinear free boundary problem {F(D(2)u) = 1 almost everywhere in B-1 boolean AND Omega vertical bar D(2)u vertical bar <= K almost everywhhere in B-1\Omega, where K > 0, and Omega is an unknown open set. Our main result is the optimal regularity for solutions to this problem: namely, we prove that W (2,n) solutions are locally C (1,1) inside B (1). Under the extra condition that and a uniform thickness assumption on the coincidence set {D u = 0}, we also show local regularity for the free boundary partial derivative Omega boolean AND B-1.
引用
收藏
页码:269 / 286
页数:18
相关论文
共 18 条
[11]  
KINDERLEHRER D., 1977, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V4, P373
[12]  
Krylov NV., 1983, Izv. Akad. Nauk SSSR Ser. Mat, V47, P75
[13]  
Lee K.-A., 1998, THESIS
[14]  
Lee KA, 2001, COMMUN PUR APPL MATH, V54, P43, DOI 10.1002/1097-0312(200101)54:1<43::AID-CPA2>3.0.CO
[15]  
2-T
[16]  
Petrosyan A., 2012, GRAD STUDIES IN MATH, V136
[17]   C1,1 regularity in semilinear elliptic problems [J].
Shahgholian, H .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (02) :278-281
[18]  
SILVESTRE L., 2013, PREPRINT