item response theory;
higher-order latent trait;
multilevel model;
Markov chain Monte Carlo (MCMC) estimation;
POSTERIOR PREDICTIVE ASSESSMENT;
LATENT TRAIT MODELS;
D O I:
10.1177/0013164413509628
中图分类号:
G44 [教育心理学];
学科分类号:
0402 ;
040202 ;
摘要:
In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The freeware WinBUGS was used for parameter estimation. A series of simulations were conducted to evaluate the parameter recovery and the consequence of ignoring the multilevel structure. The results indicated that the parameters were recovered fairly well; ignoring multilevel structures led to poor parameter estimation, overestimation of test reliability for the second-order latent trait, and underestimation of test reliability for the first-order latent traits. The Bayesian deviance information criterion and posterior predictive model checking were helpful for model comparison and model-data fit assessment. Two empirical examples that involve an ability test and a teaching effectiveness assessment are provided.
机构:
Univ La Rochelle, Lab Math Image & Applicat, Ave Michel Crepeau, F-17042 La Rochelle, FranceUniv La Rochelle, Lab Math Image & Applicat, Ave Michel Crepeau, F-17042 La Rochelle, France
Cherfils, Laurence
Miranville, Alain
论文数: 0引用数: 0
h-index: 0
机构:
Univ Poitiers, UMR CNRS 7348, SP2MI, Lab Math & Applicat, Blvd Marie & Pierre Curie Teleport 2, F-86962 Futuroscope, FranceUniv La Rochelle, Lab Math Image & Applicat, Ave Michel Crepeau, F-17042 La Rochelle, France
Miranville, Alain
Peng, Shuiran
论文数: 0引用数: 0
h-index: 0
机构:
Univ Poitiers, UMR CNRS 7348, SP2MI, Lab Math & Applicat, Blvd Marie & Pierre Curie Teleport 2, F-86962 Futuroscope, FranceUniv La Rochelle, Lab Math Image & Applicat, Ave Michel Crepeau, F-17042 La Rochelle, France
Peng, Shuiran
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION,
2017,
7
(01):
: 39
-
56