Lyapunov functions for nabla discrete fractional order systems

被引:56
|
作者
Wei, Yiheng [1 ]
Chen, Yuquan [1 ]
Liu, Tianyu [1 ]
Wang, Yong [1 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Discrete fractional calculus; Lyapunov function; Asymptotic stability; Young inequality; STABILITY ANALYSIS;
D O I
10.1016/j.isatra.2018.12.016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on the fractional difference of Lyapunov functions related to Riemann-Liouville, Caputo and Grunwald-Letnikov definitions. A new way of building Lyapunov functions is introduced and then five inequalities are derived for each definition. With the help of the developed inequalities, the sufficient conditions can be obtained to guarantee the asymptotic stability of the nabla discrete fractional order nonlinear systems. Finally, three illustrative examples are presented to demonstrate the validity and feasibility of the proposed theoretical results. (C) 2018 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:82 / 90
页数:9
相关论文
共 50 条
  • [21] Finite-time stability in measure for nabla uncertain discrete linear fractional order systems
    Qinyun Lu
    Yuanguo Zhu
    Mathematical Sciences, 2024, 18 : 55 - 62
  • [22] Controllability and observability of linear nabla fractional order systems
    Wei, Yiheng
    Gao, Yuxin
    Liu, Da-Yan
    Wang, Yong
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 10164 - 10168
  • [23] Lyapunov functions for fractional-order systems in biology: Methods and applications
    Boukhouima, Adnane
    Hattaf, Khalid
    Lotfi, El Mehdi
    Mahrouf, Marouane
    Torres, Delfim F. M.
    Yousfi, Noura
    CHAOS SOLITONS & FRACTALS, 2020, 140 (140)
  • [24] Discrete version of fundamental theorems of fractional order integration for nabla operator
    Byeon, Haewon
    Abisha, M.
    Sherine, V. Rexma
    Xavier, G. Britto Antony
    Prema, S.
    Govindan, Vediyappan
    Ahmad, Hijaz
    Piriadarshani, D.
    El-Morsy, Salwa
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 34 (04): : 381 - 393
  • [25] Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems
    Duarte-Mermoud, Manuel A.
    Aguila-Camacho, Norelys
    Gallegos, Javier A.
    Castro-Linares, Rafael
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) : 650 - 659
  • [26] Leader-Following Consensus Control of Nabla Discrete Fractional Order Multi-Agent Systems
    Ma, Jiayue
    Hu, Jiangping
    Zhao, Yiyi
    Ghosh, Bijoy Kumar
    IFAC PAPERSONLINE, 2020, 53 (02): : 2897 - 2902
  • [27] On the Lyapunov theory for fractional order systems
    Gallegos, Javier A.
    Duarte-Mermoud, Manuel A.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 287 : 161 - 170
  • [28] Nonlinear nabla variable-order fractional discrete systems: Asymptotic stability and application to neural networks
    Hioual, Amel
    Ouannas, Adel
    Grassi, Giuseppe
    Oussaeif, Taki-Eddine
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 423
  • [29] DISCRETE FRACTIONAL CALCULUS WITH THE NABLA OPERATOR
    Atici, Ferhan M.
    Eloe, Paul W.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2009,
  • [30] Stability Analysis of Fractional Chaotic and Fractional-Order Hyperchain Systems Using Lyapunov Functions
    Khalid, Thwiba A.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (01):