Effect of La0.8Sr0.2Co0.2Fe0.8O3-δ morphology on the performance of composite cathodes

被引:29
|
作者
Zhao, Erqing [1 ]
Liu, Xiaotian [1 ]
Liu, Lianbao [1 ]
Huo, Hua [1 ]
Xiong, Yueping [1 ]
机构
[1] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China
关键词
La0.8Sr0.2Co0.2Fe0.8O3-delta; Composite cathode; Electrospinning; Infiltration; DOPED CERIUM OXIDE; FUEL-CELL CATHODES; ELECTRODES; NANOFIBER;
D O I
10.1016/j.pnsc.2014.01.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present work, one dimensional La0.8Sr0.2Co0.2Fe0.8O3-delta (LSCF) nanofibers with the mean diameter of about 100 nm prepared by electrospinning were deposited on Gd0.2Ce0.8O1.9 (GDC) electrolyte followed by sintering to form one dimensional LSCF nanofiber cathode. And LSCF/GDC composite cathodes were formed by introducing GDC phases into LSCF nanofiber scaffold using infiltration method. The polarization resistances for the composite cathode with an optimal LSCF/GDC mass ratio of 1/0.56 are 0.27, 0.14 and 0.07 Omega cm(2) at 650, 700 and 750 degrees C, respectively, which are obviously smaller than 2.26, 0.78 and 0.29 Omega cm(2) of pure LSCF nanofiber cathode. And the activation energy is 1.194 eV, which is much lower than that of pure LSCF nanofiber cathode (1.684 eV). These results demonstrate that the infiltration of GDC into LSCF nanofiber scaffold is an effective approach to achieve high performance cathode for solid oxide fuel cells (SOFCs). In addition, the performance of composite cathode in this work was also compared with that of our previous nanorod structured LSCF/GDC composite cathode. (C) 2014 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.
引用
收藏
页码:24 / 30
页数:7
相关论文
共 50 条
  • [21] Oxygen transport in La0.6Sr0.4Co0.2Fe0.8O3-δ/Ce0.8Ge0.2O2-x composite cathode for IT-SOFCs
    Esquirol, A
    Kilner, J
    Brandon, N
    SOLID STATE IONICS, 2004, 175 (1-4) : 63 - 67
  • [22] Crystallization and electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.8Gd0.2O1.9 thin film cathodes processed by single solution spray pyrolysis
    Angoua, Bainye F.
    Cantwell, Patrick R.
    Stach, Eric A.
    Slamovich, Elliott B.
    SOLID STATE IONICS, 2011, 203 (01) : 62 - 68
  • [23] Fabrication and Characterisation of La0.6Sr0.4Co0.2Fe0.8O3.δ-SDC Composite Cathode
    Abd Rahman, Hamimah
    Muchtar, Andanastuti
    Muhamad, Norhamidi
    Abdullah, Huda
    COMPOSITE SCIENCE AND TECHNOLOGY, PTS 1 AND 2, 2011, 471-472 : 268 - +
  • [24] Sulfur Poisoning on La0.6Sr0.4Co0.2Fe0.8O3 Cathode for SOFCs
    Wang, Fangfang
    Yamaji, Katsuhiko
    Cho, Do-Hyung
    Shimonosono, Taro
    Kishimoto, Haruo
    Brito, Manuel E.
    Horita, Teruhisa
    Yokokawa, Harumi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (11) : B1391 - B1397
  • [25] Synthesis and Electrochemical Characterization of La0.6Sr0.4Co0.2Fe0.8O3-δ and BaZr0.8Y0.2O3-δ Electrospun Nanofiber Cathodes for Solid Oxide Fuel Cells
    Chen, Si-Heng
    Zhang, Ting-Ting
    Zhu, Dong-Yang
    Wang, Ning
    Xu, Sheng
    Ramakrishna, Seeram
    Long, Yun-Ze
    ADVANCED ENGINEERING MATERIALS, 2022, 24 (05)
  • [26] Influence of current collecting and functional layer thickness on the performance stability of La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.8Sm0.2O1.9 composite cathode
    S. A. Muhammed Ali
    Mustafa Anwar
    Lily Siong Mahmud
    Noor Shieela Kalib
    Andanastuti Muchtar
    Mahendra Rao Somalu
    Journal of Solid State Electrochemistry, 2019, 23 : 1155 - 1164
  • [27] La0.6Sr0.4Co0.2Fe0.8O3 cathodes incorporated with Sm0.2Ce0.8O2 by three different methods for solid oxide fuel cells
    Shen, Fengyu
    Lu, Kathy
    JOURNAL OF POWER SOURCES, 2015, 296 : 318 - 326
  • [28] Microstructure and electrode properties of La0.6Sr0.4Co0.2Fe0.8O3-δ spin-coated on Ce0.8Sm0.2O2-δ electrolyte
    Zhao, Kai
    Xu, Qing
    Huang, Duan-Ping
    Chen, Min
    Kim, Bok-Hee
    IONICS, 2011, 17 (03) : 247 - 254
  • [29] Characteristics of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ composite cathode for solid oxide fuel cell
    Liu, Bangwu
    Zhang, Yue
    Zhang, Limin
    JOURNAL OF POWER SOURCES, 2008, 175 (01) : 189 - 195
  • [30] High-performance perovskite Ba0.5Sr0.5Co0.8Fe0.1Zn0.1O3 - δ- La0.6Sr0.4Co0.2Fe0.8O3 - δ composite cathode
    Jung, Doh Won
    Kwak, Chan
    Park, Hee Jung
    Kim, Ju Sik
    Ahn, Sung-Jin
    Yeon, Dong-Hee
    Seo, Sooyeon
    Moon, Kyeong-Seok
    Lee, Sang Mock
    SCRIPTA MATERIALIA, 2016, 113 : 59 - 62