Light-Guiding Biomaterials for Biomedical Applications

被引:102
作者
Shabahang, Soroush [1 ]
Kim, Seonghoon [1 ]
Yun, Seok-Hyun [1 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Dept Dermatol, Wellman Ctr Photomed, 65 Landsdowne St, Cambridge, MA 02139 USA
基金
美国国家卫生研究院;
关键词
biocompatible optical materials; biodegradable waveguides; biophotonic waveguides; elastic waveguides; OPTICAL WAVE-GUIDES; HYALURONIC-ACID HYDROGELS; LINKED GELATIN HYDROGEL; POLY(ETHYLENE GLYCOL); MECHANICAL-PROPERTIES; DRUG-DELIVERY; ARTIFICIAL SKIN; SURFACE-PLASMON; LARGE-AREA; IN-VITRO;
D O I
10.1002/adfm.201706635
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Optical techniques used in medical diagnosis, surgery, and therapy require efficient and flexible delivery of light from light sources to target tissues. While this need is currently fulfilled by glass and plastic optical fibers, recent emergence of biointegrated approaches, such as optogenetics and implanted devices, calls for novel waveguides with certain biophysical and biocompatible properties and desirable shapes beyond what the conventional optical fibers can offer. To this end, exploratory efforts have begun to harness various transparent biomaterials to develop waveguides that can serve existing applications better and enable new applications in future photomedicine. Here, the recent progress in this new area of research for developing biomaterial-based optical waveguides is reviewed. It begins with a survey of biological light-guiding structures found in plants and animals, a source of inspiration for biomaterial photonics engineering. The review then describes natural and synthetic polymers and hydrogels that offer appropriate optical properties, biocompatibility, biodegradability, and mechanical flexibility have been exploited for light-guiding applications. Finally, perspectives on biomedical applications that may benefit from the unique properties and functionalities of light-guiding biomaterials are discussed briefly.
引用
收藏
页数:17
相关论文
共 173 条
  • [31] Intradermal vaccination with hollow microneedles: A comparative study of various protein antigen and adjuvant encapsulated nanoparticles
    Du, Guangsheng
    Hathout, Rania M.
    Nasr, Maha
    Nejadnik, M. Reza
    Tu, Jing
    Koning, Roman I.
    Koster, Abraham J.
    Slutter, Bram
    Kros, Alexander
    Jiskoot, Wim
    Bouwstra, Joke A.
    Monkare, Juha
    [J]. JOURNAL OF CONTROLLED RELEASE, 2017, 266 : 109 - 118
  • [32] Prospective for biodegradable microstructured optical fibers
    Dupuis, Alexandre
    Guo, Ning
    Gao, Yan
    Godbout, Nicolas
    Lacroix, Suzanne
    Dubois, Charles
    Skorobogatiy, Maksim
    [J]. OPTICS LETTERS, 2007, 32 (02) : 109 - 111
  • [33] Finding inspiration in Argiope trifasciata spider silk fibers
    Elices, M
    Pérez-Rigueiro, J
    Plaza, GR
    Guinea, GV
    [J]. JOM, 2005, 57 (02) : 60 - 66
  • [34] Muller cells are living optical fibers in the vertebrate retina
    Franze, Kristian
    Grosche, Jens
    Skatchkov, Serguei N.
    Schinkinger, Stefan
    Foja, Christian
    Schlid, Detlev
    Uckermann, Ortrud
    Travis, Kort
    Reichenbach, Andreas
    Guck, Jochen
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (20) : 8287 - 8292
  • [35] Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles
    Gaharwar, Akhilesh K.
    Rivera, Christian P.
    Wu, Chia-Jung
    Schmidt, Gudrun
    [J]. ACTA BIOMATERIALIA, 2011, 7 (12) : 4139 - 4148
  • [36] Light-Sensing in Roots
    Galen, Candace
    Rabenold, Jessica J.
    Liscum, Emmanuel
    [J]. PLANT SIGNALING & BEHAVIOR, 2007, 2 (02) : 106 - 108
  • [37] An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering
    Gentile, Piergiorgio
    Chiono, Valeria
    Carmagnola, Irene
    Hatton, Paul V.
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (03): : 3640 - 3659
  • [38] Goubau G. J., 1961, US Patent, Patent No. [2, 994, 873, 2994873]
  • [39] Matrix metalloproteinase-9 (MMP-9) as an activator of nanosystems for targeted drug delivery in pancreatic cancer
    Gruenwald, Barbara
    Vandooren, Jennifer
    Locatelli, Erica
    Fiten, Pierre
    Opdenakker, Ghislain
    Proost, Paul
    Krueger, Achim
    Lellouche, Jean Paul
    Israel, Liron Limor
    Shenkman, Louis
    Franchini, Mauro Comes
    [J]. JOURNAL OF CONTROLLED RELEASE, 2016, 239 : 39 - 48
  • [40] Highly flexible and stretchable optical strain sensing for human motion detection
    Guo, Jingjing
    Niu, Mengxuan
    Yang, Changxi
    [J]. OPTICA, 2017, 4 (10): : 1285 - 1288