Stellar spectral subclasses classification based on Isomap and SVM

被引:46
作者
Bu, Yude [1 ]
Chen, Fuqiang [2 ]
Pan, Jingchang [3 ]
机构
[1] Shandong Univ, Sch Math & Stat, Weihai 264209, Peoples R China
[2] Tongji Univ, Coll Elect & Informat Engn, Shanghai 201804, Peoples R China
[3] Shandong Univ, Sch Mech Elect & Informat Engn, Weihai 264209, Peoples R China
关键词
Principal component analysis; Isometric feature map; Support vector machine; Spectral subclasses classification; DIMENSIONALITY;
D O I
10.1016/j.newast.2013.09.007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Isometric feature map (Isomap), a nonlinear dimension reduction technique, can preserve both the local and global structure of the data when embed the original data into much lower dimensional space. In this paper we will investigate the performance of Isomap + SVM in classifying the stellar spectral subclasses. We first reduce the dimension of spectra data by PCA and Isomap respectively. Then we apply support vector machine (SVM) to classify the 4 subclasses of K-type spectra from Sloan Digital Sky Survey (SDSS). The experiment result shows that Isomap-based SVM (IS) perform better than PCA-based SVM (PS) with the default gamma in SVM, except on the spectra whose SNRs are between 5 and 10 in our experiment. The performance of PS and IS both change in a larger range with the increase of signal-to-noise ratio of the spectra. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 43
页数:9
相关论文
共 13 条
[1]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[2]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[3]  
Cox Michael AA Cox TrevorF., 2010, Multidimensional scaling
[4]   CLASSIFICATION OF STELLAR SPECTRA WITH LOCAL LINEAR EMBEDDING [J].
Daniel, Scott F. ;
Connolly, Andrew ;
Schneider, Jeff ;
Vanderplas, Jake ;
Xiong, Liang .
ASTRONOMICAL JOURNAL, 2011, 142 (06)
[5]  
Fiorentin PR, 2008, AIP CONF PROC, V1082, P76, DOI 10.1063/1.3059088
[6]  
Jolliffe I., 2002, PRINCIPAL COMPONENT, DOI [10.1007/978-1-4757-1904-8_7, 10.1016/0169-7439(87)80084-9]
[7]   QUASI-STELLAR OBJECT SELECTION ALGORITHM USING TIME VARIABILITY AND MACHINE LEARNING: SELECTION OF 1620 QUASI-STELLAR OBJECT CANDIDATES FROM MACHO LARGE MAGELLANIC CLOUD DATABASE [J].
Kim, Dae-Won ;
Protopapas, Pavlos ;
Byun, Yong-Ik ;
Alcock, Charles ;
Khardon, Roni ;
Trichas, Markos .
ASTROPHYSICAL JOURNAL, 2011, 735 (02)
[8]  
Riden James, 2002, THESIS
[9]   Nonlinear dimensionality reduction by locally linear embedding [J].
Roweis, ST ;
Saul, LK .
SCIENCE, 2000, 290 (5500) :2323-+
[10]   Stellar spectral classification using principal component analysis and artificial neural networks [J].
Singh, HP ;
Gulati, RK ;
Gupta, R .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1998, 295 (02) :312-318