The importance of neutral examples for learning sentiment

被引:79
|
作者
Koppel, Moshe [1 ]
Schler, Jonathan [1 ]
机构
[1] Bar Ilan Univ, Dept Comp Sci, Ramat Gan, Israel
关键词
sentiment analysis; text categorization; machine learning;
D O I
10.1111/j.1467-8640.2006.00276.x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most research on learning to identify sentiment ignores "neutral" examples, learning only from examples of significant (positive or negative) polarity. We show that it is crucial to use neutral examples in learning polarity for a variety of reasons. Learning from negative and positive examples alone will not permit accurate classification of neutral examples. Moreover, the use of neutral training examples in learning facilitates better distinction between positive and negative examples.
引用
收藏
页码:100 / 109
页数:10
相关论文
共 50 条
  • [1] The Importance of Context for Sentiment Analysis in Dialogues
    Carvalho, Isabel
    Oliveira, Hugo Goncalo
    Silva, Catarina
    IEEE ACCESS, 2023, 11 : 86088 - 86103
  • [2] Sentiment Analysis using Machine Learning and Deep Learning
    Chandra, Yogesh
    Jana, Antoreep
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM-2020), 2019, : 1 - 4
  • [3] The power of ensemble learning in sentiment analysis
    Kazmaier, Jacqueline
    Vuuren, Jan H. van
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 187
  • [4] Sentiment Analysis in Turkish with Deep Learning
    Demirci, Gozde Merve
    Keskin, Seref Recep
    Dogan, Gulustan
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2215 - 2221
  • [5] Machine learning techniques for sentiment analysis
    Lopez, Jessica Olivares
    Lopez, Abraham Sanchez
    Velazquez, Rogelio Gonzalez
    Diaz, Maria del Carmen Santiago
    Vazquez, Ana Claudia Zenteno
    INTERNATIONAL JOURNAL OF COMBINATORIAL OPTIMIZATION PROBLEMS AND INFORMATICS, 2024, 15 (05): : 6 - 16
  • [6] Deep learning for sentiment analysis: A survey
    Zhang, Lei
    Wang, Shuai
    Liu, Bing
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 8 (04)
  • [7] Sentiment Analysis in Spanish Tweets: Some Experiments with Focus on Neutral Tweets
    Chiruzzo, Luis
    Etcheverry, Mathias
    Rosa, Aiala
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2020, (64): : 109 - 116
  • [8] A Sentiment Analysis System to Improve Teaching and Learning
    Rani, Sujata
    Kumar, Parteek
    COMPUTER, 2017, 50 (05) : 36 - 43
  • [9] Supervised Learning Methods Application to Sentiment Analysis
    Altares Lopez, Sergio
    Cuadrado-Gallego, Juan J.
    IDEAS '19: PROCEEDINGS OF THE 23RD INTERNATIONAL DATABASE APPLICATIONS & ENGINEERING SYMPOSIUM (IDEAS 2019), 2019, : 145 - 150
  • [10] Learning Sentiment Analysis for Accessibility User Reviews
    Aljedaani, Wajdi
    Rustam, Furqan
    Ludi, Stephanie
    Ouni, Ali
    Mkaouer, Mohamed Wiem
    2021 36TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING WORKSHOPS (ASEW 2021), 2021, : 239 - 246