Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process

被引:357
|
作者
Biller, P. [1 ]
Ross, A. B. [1 ]
Skill, S. C. [2 ]
Lea-Langton, A. [1 ]
Balasundaram, B. [2 ]
Hall, C. [1 ]
Riley, R. [1 ]
Llewellyn, C. A. [2 ]
机构
[1] Univ Leeds, Energy & Resources Res Inst, Leeds LS2 9JT, W Yorkshire, England
[2] Plymouth Marine Lab, Plymouth PL1 3DH, Devon, England
来源
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS | 2012年 / 1卷 / 01期
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
Hydrothermal liquefaction; Microalgae; Nutrient recycle; Cultivation; Bio-crude; THERMOCHEMICAL LIQUEFACTION; DUNALIELLA-TERTIOLECTA; GROWTH; GASIFICATION; OIL;
D O I
10.1016/j.algal.2012.02.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Two major considerations of the emerging algae biofuel industry are the energy intensive dewatering of the algae slurry and nutrient management. The proposed closed loop process which involves nutrient recycling of the aqueous phase from the hydrothermal liquefaction of microalgae offers a solution to both aspects. Hydrothermal liquefaction has been shown to be a low energy process for bio-crude production from microalgae. For the purpose of this research, microalgae strains of Chlorella vulgaris, Scenedesmus dimmphus and the cyanobacteria Spirulina platensis and Chlorogloeopsis fritschii were processed in batch reactors at 300 degrees C and 350 C. Following liquefaction the product phases were separated and the water phase recovered. The bio-crude yields ranged from 27 to 47 wt.%. The bio-crudes were of low 0 and N content and high heating value making them suitable for further processing. The water phase was analysed for all major nutrients, TOC and TN to determine the suitability of the recycled aqueous phase for algae cultivation. Growth trials were performed for each algae strain in a standard growth medium and compared to the growth rates in a series of dilutions of the recycled process water phase. Growth was determined by cell count and chlorophyll a absorbance. Growth occurred in heavy dilutions where the amount of growth inhibitors was not too high. The results show that the closed loop system using the recovered aqueous phase offers a promising route for sustainable oil production and nutrient management for microalgae. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:70 / 76
页数:7
相关论文
共 50 条
  • [21] Influence of process conditions and interventions on metals content in biocrude from hydrothermal liquefaction of microalgae
    Jiang, Jimeng
    Savage, Phillip E.
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2017, 26 : 131 - 134
  • [22] Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae
    Biller, Patrick
    Sharma, Brajendra K.
    Kunwar, Bidhya
    Ross, Andrew B.
    FUEL, 2015, 159 : 197 - 205
  • [23] Integration of hydrothermal liquefaction of Cyanophyta and supercritical water oxidation of its aqueous phase products: Biocrude production and nutrient removal
    Wang, Yanxin
    Qian, Lili
    Yang, Derui
    Gong, Yanmeng
    Yuan, Chuan
    Hu, Yamin
    Gu, Heng
    Sun, Panpan
    Wang, Shuang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 914
  • [24] Hydrothermal liquefaction phase behavior of microalgae & model compounds in fused silica capillary reactor
    Xie, Guangna
    Chen, Yu
    Bei, Ke
    Gao, Zhipeng
    Yang, Mingde
    Wang, Junliang
    Wu, Yulong
    Pan, Zhiyan
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2017, 14 (11) : 861 - 867
  • [25] Investigation of aqueous phase recycling for improving bio-crude oil yield in hydrothermal liquefaction of algae
    Hu, Yulin
    Feng, Shanghuan
    Yuan, Zhongshun
    Xu, Chunbao
    Bassi, Amarjeet
    BIORESOURCE TECHNOLOGY, 2017, 239 : 151 - 159
  • [26] Hydrothermal Carbonization of Microalgae-Fungal Pellets: Removal of Nutrients from the Aqueous Phase Fungi and Microalgae Cultivation
    Chen, Jie
    Ding, Lisha
    Liu, Renfeng
    Xu, Siyu
    Li, Luyi
    Gao, Liwei
    Wei, Liang
    Leng, Songqi
    Li, Jun
    Li, Jingjing
    Leng, Lijian
    Zhou, Wenguang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (45) : 16823 - 16832
  • [27] Characterization of products from fast and isothermal hydrothermal liquefaction of microalgae
    Faeth, Julia L.
    Savage, Phillip E.
    Jarvis, Jacqueline M.
    McKenna, Amy M.
    Savage, Phillip E.
    AICHE JOURNAL, 2016, 62 (03) : 815 - 828
  • [28] Aqueous Phase from Hydrothermal Liquefaction: Composition and Toxicity Assessment
    Kulikova, Yuliya
    Klementev, Sviatoslav
    Sirotkin, Alexander
    Mokrushin, Ivan
    Bassyouni, Mohamed
    Elhenawy, Yasser
    El-Hadek, Medhat A. A.
    Babich, Olga
    WATER, 2023, 15 (09)
  • [29] Effects of the aqueous phase recycling on bio-oil yield in hydrothermal liquefaction of Spirulina Platensis, α-cellulose, and lignin
    Chen, Haitao
    He, Zhixia
    Zhang, Bo
    Feng, Huan
    Kandasamy, Sabariswaran
    Wang, Bin
    ENERGY, 2019, 179 : 1103 - 1113
  • [30] Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae
    Fortier, Marie-Odile P.
    Roberts, Griffin W.
    Stagg-Williams, Susan M.
    Sturm, Belinda S. M.
    APPLIED ENERGY, 2014, 122 : 73 - 82