Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process

被引:363
作者
Biller, P. [1 ]
Ross, A. B. [1 ]
Skill, S. C. [2 ]
Lea-Langton, A. [1 ]
Balasundaram, B. [2 ]
Hall, C. [1 ]
Riley, R. [1 ]
Llewellyn, C. A. [2 ]
机构
[1] Univ Leeds, Energy & Resources Res Inst, Leeds LS2 9JT, W Yorkshire, England
[2] Plymouth Marine Lab, Plymouth PL1 3DH, Devon, England
来源
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS | 2012年 / 1卷 / 01期
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Hydrothermal liquefaction; Microalgae; Nutrient recycle; Cultivation; Bio-crude; THERMOCHEMICAL LIQUEFACTION; DUNALIELLA-TERTIOLECTA; GROWTH; GASIFICATION; OIL;
D O I
10.1016/j.algal.2012.02.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Two major considerations of the emerging algae biofuel industry are the energy intensive dewatering of the algae slurry and nutrient management. The proposed closed loop process which involves nutrient recycling of the aqueous phase from the hydrothermal liquefaction of microalgae offers a solution to both aspects. Hydrothermal liquefaction has been shown to be a low energy process for bio-crude production from microalgae. For the purpose of this research, microalgae strains of Chlorella vulgaris, Scenedesmus dimmphus and the cyanobacteria Spirulina platensis and Chlorogloeopsis fritschii were processed in batch reactors at 300 degrees C and 350 C. Following liquefaction the product phases were separated and the water phase recovered. The bio-crude yields ranged from 27 to 47 wt.%. The bio-crudes were of low 0 and N content and high heating value making them suitable for further processing. The water phase was analysed for all major nutrients, TOC and TN to determine the suitability of the recycled aqueous phase for algae cultivation. Growth trials were performed for each algae strain in a standard growth medium and compared to the growth rates in a series of dilutions of the recycled process water phase. Growth was determined by cell count and chlorophyll a absorbance. Growth occurred in heavy dilutions where the amount of growth inhibitors was not too high. The results show that the closed loop system using the recovered aqueous phase offers a promising route for sustainable oil production and nutrient management for microalgae. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:70 / 76
页数:7
相关论文
共 30 条
[1]   Hydrothermal liquefaction of the brown macro-alga Laminaria Saccharina: Effect of reaction conditions on product distribution and composition [J].
Anastasakis, K. ;
Ross, A. B. .
BIORESOURCE TECHNOLOGY, 2011, 102 (07) :4876-4883
[2]   HIGH INTERNAL PH CONVEYS AMMONIA RESISTANCE IN SPIRULINA-PLATENSIS [J].
BELKIN, S ;
BOUSSIBA, S .
BIORESOURCE TECHNOLOGY, 1991, 38 (2-3) :167-169
[3]   Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters [J].
Bhatnagar, Ashish ;
Chinnasamy, Senthil ;
Singh, Manjinder ;
Das, K. C. .
APPLIED ENERGY, 2011, 88 (10) :3425-3431
[4]   Catalytic hydrothermal processing of microalgae: Decomposition and upgrading of lipids [J].
Biller, P. ;
Riley, R. ;
Ross, A. B. .
BIORESOURCE TECHNOLOGY, 2011, 102 (07) :4841-4848
[5]   Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content [J].
Biller, P. ;
Ross, A. B. .
BIORESOURCE TECHNOLOGY, 2011, 102 (01) :215-225
[6]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[7]   Growth Inhibition of Monodus subterraneus by Free Fatty Acids [J].
Bosma, R. ;
Miazek, K. ;
Willemsen, S. M. ;
Vermue, M. H. ;
Wijffels, R. H. .
BIOTECHNOLOGY AND BIOENGINEERING, 2008, 101 (05) :1108-1114
[8]   Hydrothermal Liquefaction and Gasification of Nannochloropsis sp. [J].
Brown, Tylisha M. ;
Duan, Peigao ;
Savage, Phillip E. .
ENERGY & FUELS, 2010, 24 (06) :3639-3646
[9]   Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta [J].
Chen, Meng ;
Tang, Haiying ;
Ma, Hongzhi ;
Holland, Thomas C. ;
Ng, K. Y. Simon ;
Salley, Steven O. .
BIORESOURCE TECHNOLOGY, 2011, 102 (02) :1649-1655
[10]  
Corbitt R.A., 1998, STANDARD HDB ENV ENG, V2nd