Prospecting hydrogen production of Escherichia coli by metabolic network modeling

被引:8
|
作者
Seppala, Jenni J. [1 ,2 ]
Larjo, Antti [1 ,3 ]
Aho, Tommi [2 ]
Yli-Harja, Olli [1 ]
Karp, Matti T. [2 ]
Santala, Ville [2 ]
机构
[1] Tampere Univ Technol, Dept Signal Proc, FI-33101 Tampere, Finland
[2] Tampere Univ Technol, Dept Chem & Bioengn, FI-33101 Tampere, Finland
[3] Aalto Univ, Dept Informat & Comp Sci, FI-00076 Aalto, Finland
基金
芬兰科学院;
关键词
Hydrogen production; Flux balance analysis; Metabolic engineering; Escherichia coli; Metabolic network modeling; TRANSCRIPTIONAL CONTROL; GENE-EXPRESSION; FLUX ANALYSIS; GLUCOSE; FORMATE; ACID; RECONSTRUCTION; INACTIVATION; LYASE;
D O I
10.1016/j.ijhydene.2013.07.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Genome-scale model was applied to analyze the anaerobic metabolism of Escherichia coli. Three different methods were used to find deletions affecting fermentative hydrogen production: flux balance analysis (FBA), algorithm for blocking competing pathways (ABCP), and manual selection. Based on these methods, 81 E. coli mutants possessing one gene deletion were selected and cultivated in batch experiments. Experimental results of H-2 and biomass production were compared against the results of FBA. Several gene deletions enhancing H-2 production were found. Correctness of gene essentiality predictions of FBA for the selected genes was 78% and 77% in glucose and galactose media, respectively. 33% of the mutations that were predicted by FBA to increase H-2 production had a positive effect in experiments. Batch cultivation is a simple and straightforward experimental way to screen improvements in H-2 production. However, the ability of FBA to predict the H-2 production rate cannot be evaluated by batch experiments. Metabolic network models provide a method for gaining broader understanding of the complicated metabolic system of a cell and can aid in prospecting suitable gene deletions for enhancing H-2 production. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:11780 / 11789
页数:10
相关论文
共 50 条
  • [31] Metabolic Engineering of Escherichia coli for Efficient Production of Ectoine
    Wang, Ke
    Song, Xitong
    Cui, Boya
    Wang, Yi
    Luo, Wei
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2024, 73 (01) : 646 - 654
  • [32] Reconstruction of metabolic pathway for isobutanol production in Escherichia coli
    Noda, Shuhei
    Mori, Yutaro
    Oyama, Sachiko
    Kondo, Akihiko
    Araki, Michihiro
    Shirai, Tomokazu
    MICROBIAL CELL FACTORIES, 2019, 18 (1) : 124
  • [33] Metabolic Engineering of Escherichia coli for Production of Valuable Compounds
    Nakashima, N.
    Tamura, T.
    JOURNAL OF BIOTECHNOLOGY, 2010, 150 : S409 - S409
  • [34] Metabolic modeling and response surface analysis of an Escherichia coli strain engineered for shikimic acid production
    Martinez, Juan A.
    Rodriguez, Alberto
    Moreno, Fabian
    Flores, Noemi
    Lara, Alvaro R.
    Ramirez, Octavio T.
    Gosset, Guillermo
    Bolivar, Francisco
    BMC SYSTEMS BIOLOGY, 2018, 12
  • [35] Fermentative hydrogen production by Clostridium butyricum and Escherichia coli in pure and cocultures
    Seppala, Jenni J.
    Puhakka, Jaakko A.
    Yli-Harja, Olli
    Karp, Matti T.
    Santala, Ville
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (17) : 10701 - 10708
  • [36] Metabolic engineering for improving ectoine production in Escherichia coli
    Li, Ying
    Zhang, Shuyan
    Li, Hedan
    Huang, Danyang
    Liu, Ziwei
    Gong, Dengke
    Wang, Yang
    Wang, Zhen
    Wang, Xiaoyuan
    SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING, 2024, 4 (01): : 337 - 347
  • [37] Metabolic engineering of Escherichia coli for efficient ectoine production
    Zhang, Shuyan
    Fang, Yu
    Zhu, Lifei
    Li, Hedan
    Wang, Zhen
    Li, Ying
    Wang, Xiaoyuan
    SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING, 2021, 1 (04): : 444 - 458
  • [38] Engineering metabolic pathways in Escherichia coli for constructing a "microbial chassis" for biochemical production
    Matsumoto, Takuya
    Tanaka, Tsutomu
    Kondo, Akihiko
    BIORESOURCE TECHNOLOGY, 2017, 245 : 1362 - 1368
  • [39] Metabolic Engineering of De Novo Pathway for the Production of 2′-Fucosyllactose in Escherichia coli
    Li, Chenchen
    Li, Mengli
    Hu, Miaomiao
    Zhang, Tao
    MOLECULAR BIOTECHNOLOGY, 2023, 65 (09) : 1485 - 1497
  • [40] Multistep Metabolic Engineering of Escherichia coli for High-Level Ectoine Production
    Lei, Zheng
    Wu, Jinyong
    Lao, Caiwen
    Wang, Jin
    Xu, Yanyi
    Li, He
    Yuan, Lixia
    Chen, Xiangsong
    Yao, Jianming
    ACS SYNTHETIC BIOLOGY, 2025, 14 (04): : 1230 - 1239