Prospecting hydrogen production of Escherichia coli by metabolic network modeling

被引:8
|
作者
Seppala, Jenni J. [1 ,2 ]
Larjo, Antti [1 ,3 ]
Aho, Tommi [2 ]
Yli-Harja, Olli [1 ]
Karp, Matti T. [2 ]
Santala, Ville [2 ]
机构
[1] Tampere Univ Technol, Dept Signal Proc, FI-33101 Tampere, Finland
[2] Tampere Univ Technol, Dept Chem & Bioengn, FI-33101 Tampere, Finland
[3] Aalto Univ, Dept Informat & Comp Sci, FI-00076 Aalto, Finland
基金
芬兰科学院;
关键词
Hydrogen production; Flux balance analysis; Metabolic engineering; Escherichia coli; Metabolic network modeling; TRANSCRIPTIONAL CONTROL; GENE-EXPRESSION; FLUX ANALYSIS; GLUCOSE; FORMATE; ACID; RECONSTRUCTION; INACTIVATION; LYASE;
D O I
10.1016/j.ijhydene.2013.07.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Genome-scale model was applied to analyze the anaerobic metabolism of Escherichia coli. Three different methods were used to find deletions affecting fermentative hydrogen production: flux balance analysis (FBA), algorithm for blocking competing pathways (ABCP), and manual selection. Based on these methods, 81 E. coli mutants possessing one gene deletion were selected and cultivated in batch experiments. Experimental results of H-2 and biomass production were compared against the results of FBA. Several gene deletions enhancing H-2 production were found. Correctness of gene essentiality predictions of FBA for the selected genes was 78% and 77% in glucose and galactose media, respectively. 33% of the mutations that were predicted by FBA to increase H-2 production had a positive effect in experiments. Batch cultivation is a simple and straightforward experimental way to screen improvements in H-2 production. However, the ability of FBA to predict the H-2 production rate cannot be evaluated by batch experiments. Metabolic network models provide a method for gaining broader understanding of the complicated metabolic system of a cell and can aid in prospecting suitable gene deletions for enhancing H-2 production. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:11780 / 11789
页数:10
相关论文
共 50 条
  • [21] Co-production of hydrogen and ethyl acetate in Escherichia coli
    Bohnenkamp, Anna C.
    Wijffels, Rene H.
    Kengen, Serve W. M.
    Weusthuis, Ruud A.
    BIOTECHNOLOGY FOR BIOFUELS, 2021, 14 (01)
  • [22] Metabolic engineering of Escherichia coli for chondroitin production
    Zhao C.
    Guo L.
    Gao C.
    Song W.
    Wu J.
    Liu J.
    Liu L.
    Chen X.
    Huagong Xuebao/CIESC Journal, 2023, 74 (05): : 2111 - 2122
  • [23] Metabolic engineering of Escherichia coli for agmatine production
    Xu, Daqing
    Zhang, Lirong
    ENGINEERING IN LIFE SCIENCES, 2019, 19 (01): : 13 - 20
  • [24] Pseudogene YdfW in Escherichia coli decreases hydrogen production through nitrate respiration pathways
    Mokhtar, Marahaini
    Yusoff, Mohd Zulkhairi Mohd
    Ali, Mohd Shukuri Mohamad
    Mustapha, Nurul Asyifah
    Wood, Thomas K.
    Maeda, Toshinari
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (31) : 16212 - 16223
  • [25] Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol
    Kien Trung Tran
    Toshinari Maeda
    Thomas K. Wood
    Applied Microbiology and Biotechnology, 2014, 98 : 4757 - 4770
  • [26] METABOLIC PATHWAY MODIFICATION FOR PRODUCTION OF XYLITOL FROM GLUCOSE IN ESCHERICHIA COLI
    Abdullah, Noradilin
    Illias, Rosli Md
    Oon, Low Kheng
    Jaafar, Nardiah Rizwana
    Sukri, Norhamiza Mohamad
    Rahman, Roshanida Abdul
    JURNAL TEKNOLOGI-SCIENCES & ENGINEERING, 2022, 84 (03): : 151 - 162
  • [27] Metabolic engineering of Escherichia coli strains for co-production of hydrogen and ethanol from glucose
    Seol, Eunhee
    Ainala, Satish Kumar
    Sekar, Balaji Sundara
    Park, Sunghoon
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (33) : 19323 - 19330
  • [28] Metabolic engineering of Escherichia coli for high-yield uridine production
    Wu, Heyun
    Li, Yanjun
    Ma, Qian
    Li, Qiang
    Jia, Zifan
    Yang, Bo
    Xu, Qingyang
    Fan, Xiaoguang
    Zhang, Chenglin
    Chen, Ning
    Xie, Xixian
    METABOLIC ENGINEERING, 2018, 49 : 248 - 256
  • [29] Taurine production by systems metabolic engineering of Escherichia coli
    Choi, Y. J.
    Park, J. H.
    Lee, S. Y.
    JOURNAL OF BIOTECHNOLOGY, 2010, 150 : S515 - S515
  • [30] Metabolic engineering of Escherichia coli for the production of isobutanol: a review
    Gu, Pengfei
    Liu, Liwen
    Ma, Qianqian
    Dong, Zilong
    Wang, Qiang
    Xu, Jie
    Huang, Zhaosong
    Li, Qiang
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2021, 37 (10)