Genome-wide analysis of nucleotide-binding site disease resistance genes in Medicago truncatula

被引:17
|
作者
Song, Hui [1 ]
Nan, Zhibiao [1 ]
机构
[1] Lanzhou Univ, Coll Pastoral Agr Sci & Technol, Key Lab Grassland Agroecosyst, Minist Agr, Lanzhou 730000, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2014年 / 59卷 / 11期
关键词
Medicago truncatula; Disease resistance genes; Nucleotide-binding sites; Phylogenetic tree; MULTIPLE SEQUENCE ALIGNMENT; RICH REPEAT GENES; NBS-LRR PROTEINS; ENCODING GENES; PLANT; ARABIDOPSIS; DOMAIN; IDENTIFICATION; RECEPTORS; DIVERSITY;
D O I
10.1007/s11434-014-0155-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The class of nucleotide-binding site (NBS)-Leucine-rich repeat (LRR) disease resistance genes play an important role in defending plants from a variety of pathogens and insect pests. Consequently, many NBS-LRR genes have been identified in various plant species. In this study, we identified 617 NBS-encoding genes in the Medicago truncatula genome (Mt3.5v5) and divided them into two groups, regular (490) and non-regular (127) NBS-LRR genes. The regular NBS-LRR genes were characterized on the bases of structural diversity, chromosomal location, gene duplication, conserved protein motifs, and EST expression profiling. According to N-terminal motifs and LRR motifs, the 490 regular NBS-LRR genes were then classified into 10 types: CC-NBS (4), CC-NBS-LRR (212), TIR-NBS (20), TIR-NBS-LRR (160), TIR-NBS-TIR (1), TIR-NBS-TIR-LRR (2), NBS-TIR (7), NBS-TIR-LRR (1), NBS (10), and NBS-LRR (73). Analysis of the physical location and duplications of the regular NBS-LRR genes revealed that the M. truncatula genome is similar to rice. Interestingly, we found that TIR-type genes are more frequently expressed than non-TIR-type genes in M. truncatula, whereas the number of non-TIR-type regular NBS-LRR genes was greater than TIR-type genes, suggesting the gene expression was not associated with the total number of NBS-LRR genes. Moreover, we found that the phylogenetic tree supported our division of the regular
引用
收藏
页码:1129 / 1138
页数:10
相关论文
共 50 条
  • [21] Genome-wide identification and characterization of R2R3-MYB genes in Medicago truncatula
    Li, Wei
    Liu, Ying
    Zhao, Jinyue
    Zhen, Xin
    Guo, Changhong
    Shu, Yongjun
    GENETICS AND MOLECULAR BIOLOGY, 2019, 42 (03) : 611 - 623
  • [22] Genome-Wide Analysis of the Cyclin Gene Family and Their Expression Profile in Medicago truncatula
    Meng, Juan
    Peng, Mengdi
    Yang, Jie
    Zhao, Yiran
    Hu, Junshu
    Zhu, Yuntao
    He, Hengbin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (24) : 1 - 21
  • [23] Genome-Wide Analysis of the Growth-Regulating Factor Family in Medicago truncatula
    Li, Hua
    Qiu, Taotao
    Zhou, Zhaosheng
    Kang, Liqing
    Chen, Rongrong
    Zeng, Liming
    Yu, Hongyang
    Wang, Yihua
    Song, Jianbo
    JOURNAL OF PLANT GROWTH REGULATION, 2023, 42 (04) : 2305 - 2316
  • [24] Genome-wide identification and expression analysis of the GRAS family proteins in Medicago truncatula
    Song, Lili
    Tao, Lei
    Cui, Huiping
    Ling, Lei
    Guo, Changhong
    ACTA PHYSIOLOGIAE PLANTARUM, 2017, 39 (04)
  • [25] Genome-wide identification and expression analysis of the VQ gene family in Cicer arietinum and Medicago truncatula
    Ling, Lei
    Qu, Yue
    Zhu, Jintao
    Wang, Dan
    Guo, Changhong
    PEERJ, 2020, 8
  • [26] Genome-wide analysis and identification of microRNAs in Medicago truncatula under aluminum stress
    Lu, Zhongjie
    Yang, Zhengyu
    Tian, Zheng
    Gui, Qihui
    Dong, Rui
    Chen, Chao
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [27] Genome-Wide Analysis of NLR Disease Resistance Genes in an Updated Reference Genome of Barley
    Li, Qian
    Jiang, Xing-Mei
    Shao, Zhu-Qing
    FRONTIERS IN GENETICS, 2021, 12
  • [28] Genome-Wide Architecture of Disease Resistance Genes in Lettuce
    Christopoulou, Marilena
    Wo, Sebastian Reyes-Chin
    Kozik, Alex
    McHale, Leah K.
    Truco, Maria-Jose
    Wroblewski, Tadeusz
    Michelmore, Richard W.
    G3-GENES GENOMES GENETICS, 2015, 5 (12): : 2655 - 2669
  • [29] Genome-wide investigation on metal tolerance protein (MTP) genes in leguminous plants: Glycine max, Medicago truncatula, and Lotus japonicus
    Xu, Yunjian
    Cheng, Lu
    Chen, Jiabin
    Lu, Yufan
    Qin, Yinghang
    Yan, Yixiu
    Liu, Fang
    Tan, Jing
    ACTA PHYSIOLOGIAE PLANTARUM, 2023, 45 (01)
  • [30] Genome-wide identification of nucleotide-binding domain leucine-rich repeat (NLR) genes and their association with green peach aphid (Myzus persicae) resistance in peach
    Yu, Haixiang
    Wu, Xuelian
    Liang, Jiahui
    Han, Ziying
    Xiao, Yuansong
    Du, Hao
    Liu, Yihua
    Guo, Jian
    Peng, Futian
    BMC PLANT BIOLOGY, 2023, 23 (01)