Genome-wide analysis of nucleotide-binding site disease resistance genes in Medicago truncatula

被引:17
|
作者
Song, Hui [1 ]
Nan, Zhibiao [1 ]
机构
[1] Lanzhou Univ, Coll Pastoral Agr Sci & Technol, Key Lab Grassland Agroecosyst, Minist Agr, Lanzhou 730000, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2014年 / 59卷 / 11期
关键词
Medicago truncatula; Disease resistance genes; Nucleotide-binding sites; Phylogenetic tree; MULTIPLE SEQUENCE ALIGNMENT; RICH REPEAT GENES; NBS-LRR PROTEINS; ENCODING GENES; PLANT; ARABIDOPSIS; DOMAIN; IDENTIFICATION; RECEPTORS; DIVERSITY;
D O I
10.1007/s11434-014-0155-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The class of nucleotide-binding site (NBS)-Leucine-rich repeat (LRR) disease resistance genes play an important role in defending plants from a variety of pathogens and insect pests. Consequently, many NBS-LRR genes have been identified in various plant species. In this study, we identified 617 NBS-encoding genes in the Medicago truncatula genome (Mt3.5v5) and divided them into two groups, regular (490) and non-regular (127) NBS-LRR genes. The regular NBS-LRR genes were characterized on the bases of structural diversity, chromosomal location, gene duplication, conserved protein motifs, and EST expression profiling. According to N-terminal motifs and LRR motifs, the 490 regular NBS-LRR genes were then classified into 10 types: CC-NBS (4), CC-NBS-LRR (212), TIR-NBS (20), TIR-NBS-LRR (160), TIR-NBS-TIR (1), TIR-NBS-TIR-LRR (2), NBS-TIR (7), NBS-TIR-LRR (1), NBS (10), and NBS-LRR (73). Analysis of the physical location and duplications of the regular NBS-LRR genes revealed that the M. truncatula genome is similar to rice. Interestingly, we found that TIR-type genes are more frequently expressed than non-TIR-type genes in M. truncatula, whereas the number of non-TIR-type regular NBS-LRR genes was greater than TIR-type genes, suggesting the gene expression was not associated with the total number of NBS-LRR genes. Moreover, we found that the phylogenetic tree supported our division of the regular
引用
收藏
页码:1129 / 1138
页数:10
相关论文
共 50 条
  • [1] Genome-Wide Identification and Characterization of Nucleotide-Binding Site (NBS) Resistance Genes in Pineapple
    Zhang, Xiaodan
    Liang, Pingping
    Ming, Ray
    TROPICAL PLANT BIOLOGY, 2016, 9 (03) : 187 - 199
  • [2] Genome Wide Analysis of Nucleotide-Binding Site Disease Resistance Genes in Brachypodium distachyon
    Tan, Shenglong
    Wu, Song
    COMPARATIVE AND FUNCTIONAL GENOMICS, 2012,
  • [3] Genome-wide comparative analysis of the nucleotide-binding site-encoding genes in four Ipomoea species
    Si, Zengzhi
    Wang, Lianjun
    Qiao, Yake
    Roychowdhury, Rajib
    Ji, Zhixin
    Zhang, Kai
    Han, Jinling
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [4] Systematic analysis and comparison of nucleotide-binding site disease resistance genes in maize
    Cheng, Ying
    Li, Xiaoyu
    Jiang, Haiyang
    Ma, Wei
    Miao, Weiyun
    Yamada, Toshihiko
    Zhang, Ming
    FEBS JOURNAL, 2012, 279 (13) : 2431 - 2443
  • [5] Genome-wide identification and evolutionary analysis of nucleotide-binding site-encoding resistance genes in Lotus japonicus (Fabaceae)
    Song, H.
    Wang, P. F.
    Li, T. T.
    Xia, H.
    Zhao, S. Z.
    Hou, L.
    Zhao, C. Z.
    GENETICS AND MOLECULAR RESEARCH, 2015, 14 (04): : 16024 - 16040
  • [6] Genome-Wide Analysis of the AP2/ERF Superfamily Genes and their Responses to Abiotic Stress in Medicago truncatula
    Shu, Yongjun
    Liu, Ying
    Zhang, Jun
    Song, Lili
    Guo, Changhong
    FRONTIERS IN PLANT SCIENCE, 2016, 6
  • [7] Genome-wide association analysis of salinity responsive traits in Medicago truncatula
    Kang, Yun
    Torres-Jerez, Ivone
    An, Zewei
    Greve, Veronica
    Huhman, David
    Krom, Nicholas
    Cui, Yuehua
    Udvardi, Michael
    PLANT CELL AND ENVIRONMENT, 2019, 42 (05) : 1513 - 1531
  • [8] Genome-Wide Comparison of Nucleotide-Binding Site-Leucine-Rich Repeat-Encoding Genes in Arabidopsis
    Guo, Ya-Long
    Fitz, Joffrey
    Schneeberger, Korbinian
    Ossowski, Stephan
    Cao, Jun
    Weigel, Detlef
    PLANT PHYSIOLOGY, 2011, 157 (02) : 757 - 769
  • [9] Genome-Wide Identification and Characterization of DIR Genes in Medicago truncatula
    Song, Min
    Peng, Xiangyong
    BIOCHEMICAL GENETICS, 2019, 57 (04) : 487 - 506
  • [10] Genome-wide analysis of the CCCH zinc finger gene family in Medicago truncatula
    Zhang, Cuiqin
    Zhang, Hongmei
    Zhao, Yang
    Jiang, Haiyang
    Zhu, Suwen
    Cheng, Beijiu
    Xiang, Yan
    PLANT CELL REPORTS, 2013, 32 (10) : 1543 - 1555