共 50 条
Carbene modification and reversible crosslinking of silver nanoparticles for controlled antibacterial activity
被引:4
作者:
Jing, Liling
[1
]
Moloney, Mark G.
[2
,3
]
Xu, Hao
[1
]
Liu, Lian
[1
]
Sun, Wenqiang
[1
]
Li, Junying
[1
]
Yang, Pengfei
[1
]
机构:
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Chem & Pharmaceut Engn, Jinan 250353, Peoples R China
[2] Univ Oxford, Chem Res Lab, Dept Chem, Oxford OX1 3TA, England
[3] Oxford Suzhou Ctr Adv Res, Suzhou 215123, Peoples R China
关键词:
ONE-STEP SYNTHESIS;
MALEIMIDE;
FURAN;
SURFACTANTS;
NANOSILVER;
STABILITY;
EFFICIENT;
REDUCTION;
POLYMERS;
LAYERS;
D O I:
10.1038/s41598-020-72043-1
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Silver nanoparticles (Ag NPs) system capable of exhibiting different particle size at different temperature was developed, which depended on the extent of Diels-Alder (DA) reaction of bismaleimide with furan. Thus, Ag NPs were functionalized on the surface by a furyl-substituted carbene through an insertion reaction. Subsequent reversible DA crosslinking achieved a controlled aggregation with different particle size, which gives a series of different antibacterial activity. These Ag NPs were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Nanoparticle Size Analyzer. The aggregation of the Ag NPs could be reliably adjusted by varying the temperature of DA/reverse-DA reaction. The antibacterial activity was assessed using the inhibition zone method against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), which decreased first and then increased in agreement with the size evolution of Ag NPs. This approach opens a new horizon for the carbene chemistry to modify silver nanoparticles with variable size and give controlled antibacterial activity.
引用
收藏
页数:9
相关论文
共 50 条