Genetic Architecture of Natural Variation in Thermal Responses of Arabidopsis

被引:35
|
作者
Sanchez-Bermejo, Eduardo [1 ]
Zhu, Wangsheng [1 ]
Tasset, Celine [1 ]
Eimer, Hannes [1 ]
Sureshkumar, Sridevi [1 ]
Singh, Rupali [1 ]
Sundaramoorthi, Vignesh [1 ]
Colling, Luana [1 ]
Balasubramanian, Sureshkumar [1 ]
机构
[1] Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia
基金
澳大利亚研究理事会;
关键词
FLOWERING-LOCUS-C; TRANSCRIPTION FACTOR PIF4; GENOME-WIDE ASSOCIATION; INBRED LINE POPULATION; AMBIENT-TEMPERATURE; CIRCADIAN CLOCK; SALICYLIC-ACID; BLUE-LIGHT; THALIANA; TIME;
D O I
10.1104/pp.15.00942
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Wild strains of Arabidopsis (Arabidopsis thaliana) exhibit extensive natural variation in a wide variety of traits, including response to environmental changes. Ambient temperature is one of the major external factors that modulates plant growth and development. Here, we analyze the genetic architecture of natural variation in thermal responses of Arabidopsis. Exploiting wild accessions and recombinant inbred lines, we reveal extensive phenotypic variation in response to ambient temperature in distinct developmental traits such as hypocotyl elongation, root elongation, and flowering time. We show that variation in thermal response differs between traits, suggesting that the individual phenotypes do not capture all the variation associated with thermal response. Genome-wide association studies and quantitative trait locus analyses reveal that multiple rare alleles contribute to the genetic architecture of variation in thermal response. We identify at least 20 genomic regions that are associated with variation in thermal response. Further characterizations of temperature sensitivity quantitative trait loci that are shared between traits reveal a role for the blue-light receptor CRYPTOCHROME2 (CRY2) in thermosensory growth responses. We show the accession Cape Verde Islands is less sensitive to changes in ambient temperature, and through transgenic analysis, we demonstrate that allelic variation at CRY2 underlies this temperature insensitivity across several traits. Transgenic analyses suggest that the allelic effects of CRY2 on thermal response are dependent on genetic background suggestive of the presence of modifiers. In addition, our results indicate that complex light and temperature interactions, in a background-dependent manner, govern growth responses in Arabidopsis.
引用
收藏
页码:647 / +
页数:24
相关论文
共 50 条
  • [21] Natural variation of Arabidopsis thaliana root architecture in response to nitrate availability
    Li, Jianfu
    Song, Xiaoyun
    Kong, Xiuzhen
    Wang, Jun
    Sun, Wenjie
    Zuo, Kaijing
    JOURNAL OF PLANT NUTRITION, 2019, 42 (07) : 723 - 736
  • [22] Genetic analysis of natural variations in the architecture of Arabidopsis thaliana vegetative leaves
    Pérez-Pérez, JM
    Serrano-Cartagena, J
    Micol, JL
    GENETICS, 2002, 162 (02) : 893 - 915
  • [23] Natural Variation in Arabidopsis thaliana as a Tool for Highlighting Differential Drought Responses
    Bouchabke, Oumaya
    Chang, Fengqi
    Simon, Matthieu
    Voisin, Roger
    Pelletier, Georges
    Durand-Tardif, Mylene
    PLOS ONE, 2008, 3 (02):
  • [24] Genetic variation underlying differential ammonium and nitrate responses in Arabidopsis thaliana
    Katz, Ella
    Knapp, Anna
    Lensink, Mariele
    Keller, Caroline Kaley
    Stefani, Jordan
    Li, Jia-Jie
    Shane, Emily
    Tuermer-Lee, Kaelyn
    Bloom, Arnold J.
    Kliebenstein, Daniel J.
    PLANT CELL, 2022, 34 (12): : 4696 - 4713
  • [25] Genetic mapping of natural variation in potassium concentrations in shoots of Arabidopsis thaliana
    Harada, H
    Leigh, RA
    JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (04) : 953 - 960
  • [26] Natural genetic variation in arabidopsis: Tools, traits and prospects for evolutionary ecology
    Shindo, Chikako
    Bernasconi, Giorgina
    Hardtke, Christian S.
    ANNALS OF BOTANY, 2007, 99 (06) : 1043 - 1054
  • [27] Natural Genetic Variation of Arabidopsis thaliana Is Geographically Structured in the Iberian Peninsula
    Pico, F. Xavier
    Mendez-Vigo, Belen
    Martinez-Zapater, Jose M.
    Alonso-Blanco, Carlos
    GENETICS, 2008, 180 (02) : 1009 - 1021
  • [28] Natural variation of hormone levels in Arabidopsis roots and correlations with complex root architecture
    Lee, Sangseok
    Sergeeva, Lidiya I.
    Vreugdenhil, Dick
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2018, 60 (04) : 292 - 309
  • [29] Natural variation of hormone levels in Arabidopsis roots and correlations with complex root architecture
    Sangseok Lee
    Lidiya I.Sergeeva
    Dick Vreugdenhil
    Journal of Integrative Plant Biology, 2018, 60 (04) : 292 - 309
  • [30] The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster
    Hunter, Chad M.
    Huang, Wen
    Mackay, Trudy F. C.
    Singh, Nadia D.
    PLOS GENETICS, 2016, 12 (04):