Oxygen transport resistance correlated to liquid water saturation in the gas diffusion layer of PEM fuel cells

被引:144
作者
Owejan, Jon P. [1 ,2 ]
Trabold, Thomas A. [3 ]
Mench, Matthew M. [2 ]
机构
[1] SUNY Alfred State Coll, Dept Mech Engn Technol, Alfred, NY 14802 USA
[2] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA
[3] Rochester Inst Technol, Golisano Inst Sustainabil, Rochester, NY 14623 USA
关键词
Fuel cells; PEM; Diffusion; Saturation; Neutron imaging; Limiting current; POLYMER ELECTROLYTE MEMBRANE; CHANNEL; MEDIA; HEAT; CONDUCTIVITY; PEFC; FLOW;
D O I
10.1016/j.ijheatmasstransfer.2013.12.059
中图分类号
O414.1 [热力学];
学科分类号
摘要
Under typical proton exchange membrane fuel cell (PEMFC) operating conditions, temperature gradients through the porous gas diffusion layer (GDL) can result in product water condensation. As a result, non-uniform partial saturation of the GDL changes the local effective porosity and tortuosity encountered by oxygen diffusing to the catalyst layer. This additional transport resistance reduces the partial pressure of oxygen at the catalyst surface of an air-fed cathode. In the current work, this phenomenon is investigated in two-dimensions using limiting current experiments that define GDL boundary conditions along with simultaneous neutron imaging to measure the local water content relative to the flow field geometry. The subsequent effective diffusion coefficient vs. saturation relationship derived from this method is reported for two common GDL carbon fiber substrates. It is also shown that the land vs. channel distribution of liquid water must be accounted for to accurately predict diffusion resistance. These results represent the first time that the effect of water saturation on effective diffusion coefficient has been directly measured in situ, thus enabling accurate determination of the exponent "n" in the modified Bruggeman relationship for two commercially available gas diffusion layer materials. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:585 / 592
页数:8
相关论文
共 34 条
[1]  
[Anonymous], 1960, Transport Phenomena
[2]   Measurement of Oxygen Transport Resistance in PEM Fuel Cells by Limiting Current Methods [J].
Baker, Daniel R. ;
Caulk, David A. ;
Neyerlin, Kenneth C. ;
Murphy, Michael W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (09) :B991-B1003
[3]   A multi-scale approach to material modeling of fuel cell diffusion media [J].
Becker, Juergen ;
Wieser, Christian ;
Fell, Stephan ;
Steiner, Konrad .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (7-8) :1360-1368
[5]   Heat and Water Transport in Hydrophobic Diffusion Media of PEM Fuel Cells [J].
Caulk, David A. ;
Baker, Daniel R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (08) :B1237-B1244
[6]   Alternative analytical analysis for improved Loschmidt diffusion cell [J].
Cekmer, Ozgur ;
LaManna, Jacob M. ;
Mench, Matthew M. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 65 :883-892
[7]   Experimental measurement of effective diffusion coefficient of gas diffusion layer/microporous layer in PEM fuel cells [J].
Chan, Carl ;
Zamel, Nada ;
Li, Xianguo ;
Shen, Jun .
ELECTROCHIMICA ACTA, 2012, 65 :13-21
[8]   Gas diffusion layer for proton exchange membrane fuel cells-A review [J].
Cindrella, L. ;
Kannan, A. M. ;
Lin, J. F. ;
Saminathan, K. ;
Ho, Y. ;
Lin, C. W. ;
Wertz, J. .
JOURNAL OF POWER SOURCES, 2009, 194 (01) :146-160
[9]   Interaction of Heat Generation, MPL, and Water Retention in Corroded PEMFCs [J].
Fairweather, Joseph ;
Spernjak, Dusan ;
Mukundan, Rangachary ;
Spendelow, Jacob ;
Artyushkova, Kateryna ;
Atanassov, Plamen ;
Hussey, Daniel ;
Jacobson, David ;
Borup, Rodney L. .
POLYMER ELECTROLYTE FUEL CELLS 11, 2011, 41 (01) :337-348
[10]   Anisotropic, effective diffusivity of porous gas diffusion layer materials for PEFC [J].
Flueckiger, Reto ;
Freunberger, Stefan A. ;
Kramer, Denis ;
Wokaun, Alexander ;
Scherer, Guenther G. ;
Buechi, Felix N. .
ELECTROCHIMICA ACTA, 2008, 54 (02) :551-559