Calibration of fish-eye lens and error estimation on fireball trajectories: application to the FRIPON network

被引:27
作者
Jeanne, S. [1 ]
Colas, F. [1 ]
Zanda, B. [1 ,2 ]
Birlan, M. [1 ,3 ]
Vaubaillon, J. [1 ]
Bouley, S. [1 ,4 ]
Vernazza, P. [5 ]
Jorda, L. [5 ]
Gattacceca, J. [6 ]
Rault, J. L. [1 ,7 ]
Carbognani, A. [8 ,9 ]
Gardiol, D. [8 ]
Lamy, H. [10 ]
Baratoux, D. [11 ,12 ]
Blanpain, C. [13 ]
Malgoyre, A. [13 ]
Lecubin, J. [13 ]
Marmo, C. [4 ]
Hewins, P. [1 ]
机构
[1] Univ Lille, UPMC Univ Paris 06, Sorbonne Univ, IMCCE,Observ Paris,PSL Res Univ,CNRS, 77 Av Denfert Rochereau, F-75014 Paris, France
[2] UPMC Paris 06, CNRS, UMR 7590, MNHN,IMPMC,Sorbonne Univ, F-75005 Paris, France
[3] Romanian Acad, Astron Inst, 5 Cutitul Argint, Bucharest 040557, Romania
[4] Univ Paris Saclay, CNRS, Univ Paris Sud, GEOPS Geosci Paris Sud, Rue Belvedere,Bat 509, F-91405 Orsay, France
[5] Aix Marseille Univ, CNRS, UMR 7326, LAM, F-13388 Marseille, France
[6] Aix Marseille Univ, CNRS, IRD, Coll France,CEREGE UM34, F-13545 Aix En Provence, France
[7] Int Meteor Org, Josef Mattheessenstr 60, B-2540 Hove, Belgium
[8] INAF Osservatorio Astrofis Torino, Via Osservatorio 20, I-10025 Pino Torinese, TO, Italy
[9] Astron Observ Aosta Valley Autonomous Reg OAVdA, Lignan 39, I-11020 Nus, Aosta, Italy
[10] Royal Belgian Inst Space Aeron, Ave Circulaire 3, B-1180 Brussels, Belgium
[11] CNRS, UMR5563, IRD, Geosci Environm Toulouse, 14 Ave Edouard Belin, F-31400 Toulouse, France
[12] Univ Toulouse, 14 Ave Edouard Belin, F-31400 Toulouse, France
[13] Aix Marseille Univ, CNRS, UMR 3470, OSU Inst Pytheas, Marseille, France
来源
ASTRONOMY & ASTROPHYSICS | 2019年 / 627卷
关键词
astrometry; meteorites; meteors; meteoroids; METEORITES;
D O I
10.1051/0004-6361/201834990
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Fireball networks are developing over the whole planet, with the aim of recovering meteorites and at the same time determining their orbits. The ultimate goal of such networks is to identify the parent bodies of meteorite families to achieve this, orbit accuracy is critical. Yet, the determination of an orbit relies on a long and complex reduction process including: (1) astrometry, with heavy distortion for fish-eye lenses, (2) estimation of the external bias on the observation, (3) fit of the trajectory, (4) deceleration model, and (5) actual orbit computation. Aims. Our goal is to compute accurate trajectories with an estimate of internal and external errors as realistic as possible, taking advantage of the dense observation network FRIPON (Fireball Recovery and InterPlanetary Observation Network), which comprises more than 100 cameras in France and Europe. In particular, we pay special attention to the distortion of images due to fish-eye lenses. In the present paper, we describe the analytical protocol that allows us to compute trajectories and their uncertainties. Methods. We developed a general distortion model to be used on the FRIPON fish-eye cameras. Such a model needs to be accurate even at low elevation, as most fireball observations are performed low on the horizon. The radial distortion is modelled by a nine-degree odd polynomial, hence by five parameters. In addition, we used three parameters to describe the geometry of the camera and two for non-symmetrical distortion. Lastly, we used a new statistical method taking systematic errors into account, which allows us to compute realistic confidence intervals. We tested our method on a fireball that fell on 2017-08-94 UT 00:06. Results. The accuracy of our astrometrical model for each camera is 2 arcmin (1 sigma), but the internal error on the fireball of 2017-08-94 UT 00:06 measurement is 0.7 arcmin (better than 1/10 pixel). We developed a method to estimate the external error considering that each station is independent and found it equal to 0.8 arcmin. Real residuals are coherent with our estimation of internal and external error for each camera, which confirms the internal consistency of our method. We discuss the advantages and disadvantages of this protocol.
引用
收藏
页数:11
相关论文
共 32 条
  • [1] Verifying Timestamps of Occultation Observation Systems
    Barry, M. A.
    Gault, Dave
    Bolt, Greg
    McEwan, Alistair
    Filipovic, Miroslav D.
    White, Graeme L.
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2015, 32
  • [2] SExtractor: Software for source extraction
    Bertin, E
    Arnouts, S
    [J]. ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1996, 117 (02): : 393 - 404
  • [3] Bertin E., 2006, ASP C SER, V351, P112
  • [4] The Hipparcos and Tycho photometric system passbands
    Bessell, MS
    [J]. PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2000, 112 (773) : 961 - 965
  • [5] Bettonvil F., 2005, WGN, Journal of the International Meteor Organization, V33, P9
  • [6] The Australian Desert Fireball Network: a new era for planetary science
    Bland, P. A.
    Spurny, P.
    Bevan, A. W. R.
    Howard, K. T.
    Towner, M. C.
    Benedix, G. K.
    Greenwood, R. C.
    Shrbeny, L.
    Franchi, I. A.
    Deacon, G.
    Borovicka, J.
    Ceplecha, Z.
    Vaughan, D.
    Hough, R. M.
    [J]. AUSTRALIAN JOURNAL OF EARTH SCIENCES, 2012, 59 (02) : 177 - 187
  • [7] BOROVICKA J, 1990, B ASTRON I CZECH, V41, P391
  • [8] BOROVICKA J, 1995, ASTRON ASTROPHYS SUP, V112, P173
  • [9] Bronshten V., 1983, Physics of Meteoric Phenomena
  • [10] Meteorites from meteor showers: A case study of the Taurids
    Brown, Peter
    Marchenko, Valerie
    Moser, Danielle E.
    Weryk, Robert
    Cooke, William
    [J]. METEORITICS & PLANETARY SCIENCE, 2013, 48 (02) : 270 - 288