Developing best practice guidelines for lake modelling to inform quantitative microbial risk assessment

被引:1
|
作者
Yu, Songyan [1 ,2 ]
Sturm, Katrin [3 ]
Gibbes, Badin [4 ]
Kennard, Mark J. [1 ,2 ]
Veal, Cameron J. [3 ,4 ,5 ]
Middleton, Duncan [3 ]
Fisher, Paul L. [3 ,4 ]
Rotherham, Simon [3 ]
Hamilton, David P. [1 ,2 ]
机构
[1] Griffith Univ, Australian Rivers Inst, Nathan, Qld, Australia
[2] Griffith Univ, Sch Environm & Sci, Nathan, Qld, Australia
[3] Seqwater, Ipswich, Qld, Australia
[4] Univ Queensland, Sch Civil Engn, St Lucia, Qld, Australia
[5] Griffith Univ, Cities Res Inst, Nathan, Qld, Australia
关键词
Lake hydrodynamic model; Guidance; Pathogen; Water quality; Health-based targets; DRINKING-WATER; PATHOGEN CONCENTRATIONS; MANAGEMENT; FRAMEWORK; STEPS; RIVER;
D O I
10.1016/j.envsoft.2022.105334
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Numerical models of lakes and reservoirs have been widely applied to provide quantitative forecasts of pathogen occurrence and persistence in source water to inform quantitative microbial risk assessment (QMRA). There is an emerging need in the water supply industry for a set of best practice modelling guidelines, supporting consistent and repeatable use of lake modelling approaches that could be used to provide quality assurance to water authorities and regulators. To aid in the development of these guidelines, we conducted a literature review to summarise common modelling steps from existing water modelling guidelines as the basis for best practice guidelines for lake modelling. We also report on the results of a workshop, expert interviews, and online surveys that identify common challenges and requirements for each step. The summarised lake modelling steps and key requirements pave the way to complete the development of best practice guidelines for lake modelling to inform QMRA.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A quantitative microbial risk assessment of helminth ova in reusing sludge for agricultural production in developing countries
    Navarro, I.
    Jimenez, B.
    Cifuentes, E.
    Lucario, S.
    RISK ANALYSIS VI: SIMULATION AND HAZARD MITIGATION, 2008, : 65 - +
  • [22] Quantitative microbial spoilage risk assessment caused by fungi in sports drinks through multilevel modelling
    Guerrero, Felix G. Ramos
    Signorini, Marcelo
    Garre, Alberto
    Sant'Ana, Anderson S.
    Gorbena, Juan C. Ramos
    Jaimes, Marcial I. Silva
    FOOD MICROBIOLOGY, 2023, 116
  • [23] Quantitative tools in microbial and chemical risk assessment
    Zabulione, Aelita
    Valdramidis, Vasilis P.
    EFSA JOURNAL, 2023, 21
  • [24] Quantitative tools in microbial and chemical risk assessment
    Zabulione, Aelita
    Valdramidis, Vasilis P.
    EFSA JOURNAL, 2023, 21
  • [25] Quantitative microbial risk assessment - An Australian perspective
    Vanderlinde, P
    FOOD AUSTRALIA, 1998, 50 (12): : 626 - 628
  • [26] Quantitative tools in microbial and chemical risk assessment
    Stratev, Deyan
    Valdramidis, Vasilis P.
    EFSA JOURNAL, 2023, 21
  • [27] 'Omics' technologies in quantitative microbial risk assessment
    Brul, S.
    Bassett, J.
    Cook, P.
    Kathariou, S.
    McClure, P.
    Jasti, P. R.
    Betts, R.
    TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2012, 27 (01) : 12 - 24
  • [28] Sensitivity analysis in quantitative microbial risk assessment
    Zwietering, MH
    van Gerwen, SJC
    INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 2000, 58 (03) : 213 - 221
  • [29] Quantitative microbial risk assessment (QMRA) tool for modelling pathogen infection risk to wastewater treatment plant workers
    Heida, Ashley
    Maal-Bared, Rasha
    Veillette, Marc
    Duchaine, Caroline
    Reynolds, Kelly A.
    Ashraf, Ahamed
    Ogunseye, Olusola O.
    Jung, Yoonhee
    Shulman, Lester
    Ikner, Luisa
    Betancourt, Walter
    Hamilton, Kerry A.
    Wilson, Amanda M.
    WATER RESEARCH, 2024, 260
  • [30] Comprehensive assessment of cryogenic storage risk and quality management concerns: best practice guidelines for ART labs
    M. C. Schiewe
    M. Freeman
    J. B. Whitney
    M. D. VerMilyea
    A. Jones
    M. Aguirre
    C. Leisinger
    G. Adaniya
    N. Synder
    R. Chilton
    E. J. Behnke
    Journal of Assisted Reproduction and Genetics, 2019, 36 : 5 - 14