Symplectic discretization for spectral element solution of Maxwell's equations

被引:3
|
作者
Zhao, Yanmin [1 ,2 ]
Dai, Guidong [1 ,2 ]
Tang, Yifa [1 ]
Liu, Qinghuo [3 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100190, Peoples R China
[3] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
基金
中国国家自然科学基金;
关键词
TIME-DOMAIN;
D O I
10.1088/1751-8113/42/32/325203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Applying the spectral element method (SEM) based on the Gauss-Lobatto-Legendre (GLL) polynomial to discretize Maxwell's equations, we obtain a Poisson system or a Poisson system with at most a perturbation. For the system, we prove that any symplectic partitioned Runge-Kutta (PRK) method preserves the Poisson structure and its implied symplectic structure. Numerical examples show the high accuracy of SEM and the benefit of conserving energy due to the use of symplectic methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Spectral element discretization of the Maxwell equations
    Ben Belgacem, F
    Bernardi, C
    MATHEMATICS OF COMPUTATION, 1999, 68 (228) : 1497 - 1520
  • [2] The spectral element method for the solution of Maxwell's equations
    Semenikhin, Igor
    METANANO 2019, 2020, 1461
  • [3] A spectral-element time-domain solution of Maxwell's equations
    Liu, YX
    Lee, JH
    Xiao, T
    Liu, QH
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2006, 48 (04) : 673 - 680
  • [4] SYMPLECTIC DISCONTINUOUS GALERKIN FULL DISCRETIZATION FOR STOCHASTIC MAXWELL EQUATIONS
    Chen, Chuchu
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (04) : 2197 - 2217
  • [5] A simple proof of convergence for an edge element discretization of Maxwell's equations
    Monk, P
    COMPUTATIONAL ELECTROMAGNETICS, 2003, 28 : 127 - 141
  • [6] Discontinuous spectral element approximation of Maxwell's equations
    Kopriva, DA
    Woodruff, SL
    Hussaini, MY
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 355 - 361
  • [7] Optimal symplectic integrators for numerical solution of time-domain Maxwell's equations
    Huang, Z. X.
    Wu, X. L.
    Sha, Wei E. I.
    Chen, M. S.
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2007, 49 (03) : 545 - 547
  • [8] A FINITE-ELEMENT FRAMEWORK FOR A MIMETIC FINITE-DIFFERENCE DISCRETIZATION OF MAXWELL'S EQUATIONS
    Adler, James H.
    Cavanaugh, Casey
    Hu, Xiaozhe
    Zikatanov, Ludmil T.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (04): : A2638 - A2659
  • [9] Symplectic and multisymplectic numerical methods for Maxwell's equations
    Sun, Y.
    Tse, P. S. P.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (05) : 2076 - 2094
  • [10] Discretization of Maxwell's Equations in the Setting of Geometric Algebra
    Klimek, Mariusz
    Schoeps, Sebastian
    Weiland, Thomas
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 517 - 520