Stable bound orbits in microstate geometries

被引:1
|
作者
Tomizawa, Shinya [1 ]
Suzuki, Ryotaku [1 ]
机构
[1] Toyota Technol Inst, Math Phys Lab, Hisakata 2-12-1, Nagoya, Aichi 4688511, Japan
关键词
BLACK-HOLES; FUZZBALL PROPOSAL; FIELD;
D O I
10.1103/PhysRevD.105.124014
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show the existence of stable bound orbits for the massive and massless particles moving in the simplest microstate geometry spacetime in the bosonic sector of the five-dimensional minimal supergravity. In our analysis, reducing the motion of particles to a two-dimensional potential problem, we numerically investigate whether the potential has a negative local minimum.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Lower bound for angular momenta of microstate geometries in five dimensions
    Tomizawa, Shinya
    PHYSICAL REVIEW D, 2021, 104 (08)
  • [2] Toroidal tidal effects in microstate geometries
    Ceplak, Nejc
    Hampton, Shaun
    Li, Yixuan
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (03)
  • [3] A rough end for smooth microstate geometries
    Marolf, Donald
    Michel, Ben
    Puhm, Andrea
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (05):
  • [4] Instability of supersymmetric microstate geometries
    Eperon, Felicity C.
    Reall, Harvey S.
    Sontos, Jorge E.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (10):
  • [5] Instability of supersymmetric microstate geometries
    Felicity C. Eperon
    Harvey S. Reall
    Jorge E. Santos
    Journal of High Energy Physics, 2016
  • [6] Non-Abelian bubbles in microstate geometries
    Ramirez, Pedro F.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (11):
  • [7] Microstate geometries at a generic point in moduli space
    Bossard, Guillaume
    Lust, Severin
    GENERAL RELATIVITY AND GRAVITATION, 2019, 51 (09)
  • [8] Instabilities of microstate geometries with antibranes
    Bena, Iosif
    Pasini, Giulio
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (04):
  • [9] Microstate Geometries and Entropy Enhancement
    Warner, Nicholas P.
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2009, (177): : 228 - 246
  • [10] Wave Propagation on Microstate Geometries
    Keir, Joe
    ANNALES HENRI POINCARE, 2020, 21 (03): : 705 - 760