Lifshitz transition and modulation of electronic and transport properties of bilayer graphene by sliding and applied normal compressive strain

被引:19
作者
Bhattacharyya, Swastibrata [1 ]
Singh, Abhishek K. [1 ]
机构
[1] Indian Inst Sci, Mat Res Ctr, Bangalore 560012, Karnataka, India
关键词
MOLECULAR-DYNAMICS; LAYER;
D O I
10.1016/j.carbon.2015.12.025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using density functional theory (DFT) we investigate the changes in electronic and transport properties of graphene bilayer caused by sliding one of the layers. Change in stacking pattern breaks the lattice symmetry, which results in Lifshitz transition together with the modulation of the electronic structure. Going from AA to AB stacking by sliding along armchair direction leads to a drastic transition in electronic structure from linear to parabolic dispersion. Our transport calculations show a significant change in the overall transmission value for large sliding distances along zigzag direction. The increase in interlayer coupling with normal compressive strain increases the overlapping of conduction and valence band, which leads to further shift in the Dirac points and an enhancement in the Lifshitz transition. The ability to tune the topology of band structure by sliding and/or applying normal compressive strain will open doors for controlled tuning of many physical phenomenon such as Landau levels and quantum Hall effect in graphene. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:432 / 438
页数:7
相关论文
共 56 条
[1]   Thermal Gradients on Graphene to Drive Nanoflake Motion [J].
Becton, Matthew ;
Wang, Xianqiao .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (02) :722-730
[2]   Semiconductor-metal transition in semiconducting bilayer sheets of transition-metal dichalcogenides [J].
Bhattacharyya, Swastibrata ;
Singh, Abhishek K. .
PHYSICAL REVIEW B, 2012, 86 (07)
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Stacking sequence dependence of graphene layers on SiC (000(1)over-bar)-Experimental and theoretical investigation [J].
Borysiuk, J. ;
Soltys, J. ;
Piechota, J. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (09)
[5]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[6]   Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J].
Castro, Eduardo V. ;
Novoselov, K. S. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Dos Santos, J. M. B. Lopes ;
Nilsson, Johan ;
Guinea, F. ;
Geim, A. K. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[7]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[8]   Anomalous Optical Phonon Splittings in Sliding Bilayer Graphene [J].
Choi, Seon-Myeong ;
Jhi, Seung-Hoon ;
Son, Young-Woo .
ACS NANO, 2013, 7 (08) :7151-7156
[9]   Effects of strain on electronic properties of graphene [J].
Choi, Seon-Myeong ;
Jhi, Seung-Hoon ;
Son, Young-Woo .
PHYSICAL REVIEW B, 2010, 81 (08)
[10]   Edge-Edge Interactions in Stacked Graphene Nanoplatelets [J].
Cruz-Silva, Eduardo ;
Jia, Xiaoting ;
Terrones, Humberto ;
Sumpter, Bobby G. ;
Terrones, Mauricio ;
Dresselhaus, Mildred S. ;
Meunier, Vincent .
ACS NANO, 2013, 7 (03) :2834-2841