Predicting Complexation Thermodynamic Parameters of β-Cyclodextrin with Chiral Guests by Using Swarm Intelligence and Support Vector Machines

被引:12
作者
Prakasvudhisarn, Chakguy [2 ]
Wolschann, Peter [3 ]
Lawtrakul, Luckhana [1 ]
机构
[1] Thammasat Univ, SIIT, Pathum Thani 12121, Thailand
[2] Shinawatra Univ, Sch Technol, Bangkok 10900, Thailand
[3] Univ Vienna, Inst Theoret Chem, A-1090 Vienna, Austria
关键词
Particle Swarm Optimization; Support Vector Machines; QSPR; beta-cyclodextrin inclusion complexes; FREE-ENERGIES; INCLUSION COMPLEXATION; VARIABLE SELECTION; ORGANIC-MOLECULES; QSAR; MODEL; DRUG;
D O I
10.3390/ijms10052107
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Particle Swarm Optimization (PSO) and Support Vector Machines (SVMs) approaches are used for predicting the thermodynamic parameters for the 1: 1 inclusion complexation of chiral guests with beta-cyclodextrin. A PSO is adopted for descriptor selection in the quantitative structure-property relationships (QSPR) of a dataset of 74 chiral guests due to its simplicity, speed, and consistency. The modified PSO is then combined with SVMs for its good approximating properties, to generate a QSPR model with the selected features. Linear, polynomial, and Gaussian radial basis functions are used as kernels in SVMs. All models have demonstrated an impressive performance with R-2 higher than 0.8.
引用
收藏
页码:2107 / 2121
页数:15
相关论文
共 33 条
  • [11] HYUNMYUNG K, 2006, J INCL PHENOM MACRO, V54, P165, DOI DOI 10.1007/S10847-005-6288-X
  • [12] The role of charge transfer interactions in the inclusion complexation of anionic guests with α-cyclodextrin
    Jiménez, V
    Alderete, JB
    [J]. TETRAHEDRON, 2005, 61 (23) : 5449 - 5456
  • [13] Joachims T, 1999, ADVANCES IN KERNEL METHODS, P169
  • [14] Quantitative structure-property relationship modeling of β-cyclodextrin complexation free energies
    Katritzky, AR
    Fara, DC
    Yang, HF
    Karelson, M
    Suzuki, T
    Solov'ev, VP
    Varnek, A
    [J]. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2004, 44 (02): : 529 - 541
  • [15] Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
  • [16] A method for predicting the free energies of complexation between β-cyclodextrin and guest molecules
    Klein, CT
    Polheim, D
    Viernstein, H
    Wolschann, P
    [J]. JOURNAL OF INCLUSION PHENOMENA AND MACROCYCLIC CHEMISTRY, 2000, 36 (04) : 409 - 423
  • [17] Predicting the free energies of complexation between cyclodextrins and guest molecules: Linear versus nonlinear models
    Klein, CT
    Polheim, D
    Viernstein, H
    Wolschann, P
    [J]. PHARMACEUTICAL RESEARCH, 2000, 17 (03) : 358 - 365
  • [18] Correlation studies of HEPT derivatives using swarm intelligence and support vector machines
    Lawtrakul, L
    Prakasvudhisarn, C
    [J]. MONATSHEFTE FUR CHEMIE, 2005, 136 (09): : 1681 - 1691
  • [19] LAWTRAKUL L, 2008, P 14 INT CYCL S KYOT, P421
  • [20] LEI L, 1999, J INCL PHENOM MACRO, V34, P291