VARIATIONAL BAYESIAN ANALYSIS FOR HIDDEN MARKOV MODELS

被引:45
作者
McGrory, C. A. [1 ]
Titterington, D. M. [2 ]
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[2] Univ Glasgow, Dept Stat, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Bayesian analysis; deviance information criterion (DIC); hidden Markov model; variational approximation;
D O I
10.1111/j.1467-842X.2009.00543.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The variational approach to Bayesian inference enables simultaneous estimation of model parameters and model complexity. An interesting feature of this approach is that it also leads to an automatic choice of model complexity. Empirical results from the analysis of hidden Markov models with Gaussian observation densities illustrate this. If the variational algorithm is initialized with a large number of hidden states, redundant states are eliminated as the method converges to a solution, thereby leading to a selection of the number of hidden states. In addition, through the use of a variational approximation, the deviance information criterion for Bayesian model selection can be extended to the hidden Markov model framework. Calculation of the deviance information criterion provides a further tool for model selection, which can be used in conjunction with the variational approach.
引用
收藏
页码:227 / 244
页数:18
相关论文
共 23 条
  • [21] Bayesian measures of model complexity and fit
    Spiegelhalter, DJ
    Best, NG
    Carlin, BR
    van der Linde, A
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 : 583 - 616
  • [22] Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model
    Wang, Bo
    Titterington, D. M.
    [J]. BAYESIAN ANALYSIS, 2006, 1 (03): : 625 - 649
  • [23] Winn J, 2005, J MACH LEARN RES, V6, P661