Dynamic modeling and simulation of steam power plants is often adopted as a tool for control design, personnel training, efficiency improvement and on-line diagnostic. The boiler is possibly the most complex component of the thermal power plant. A usual boiler configuration is the so-called Once-Through arrangement. A common problem in 2-phase systems modeling is the correct calculation of the phase boundary. This is technically interesting in such boilers: the location of the phase transition changes rapidly depending on load conditions and temperature distribution along the walls. A lumped parameters, one-dimensional evaporator model implementing a moving boundary approach is presented and first validation results are discussed. The model takes into account the influence of radiation and convection on the gas side. The flow inside the pipes is divided into 3 regions (sub-cooled, 2-phase, superheated) and the model calculates the locations of the 2-phase transitions and the average steam quality along the pipes. The system is discretized using a staggered grid for higher numerical stability and is implemented in the computer program Aspen Custom Modeler (ACM). Results include the calculation of the system response to input signals simulating a load variation and a validation by comparison with a model implemented in a commercial software for power plant simulations (MMS). Input data, parameters and geometry are taken from an existing plant operating in Uppsala, Sweden.