Productivity prediction of a multilateral-well geothermal system based on a long short-term memory and multi-layer perceptron combinational neural network
被引:87
|
作者:
Shi, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Southwest Jiaotong Univ, Fac Geosci & Environm Engn, Chengdu 611756, Peoples R ChinaSouthwest Jiaotong Univ, Fac Geosci & Environm Engn, Chengdu 611756, Peoples R China
Shi, Yu
[1
]
Song, Xianzhi
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R ChinaSouthwest Jiaotong Univ, Fac Geosci & Environm Engn, Chengdu 611756, Peoples R China
Song, Xianzhi
[2
]
Song, Guofeng
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R ChinaSouthwest Jiaotong Univ, Fac Geosci & Environm Engn, Chengdu 611756, Peoples R China
Song, Guofeng
[2
]
机构:
[1] Southwest Jiaotong Univ, Fac Geosci & Environm Engn, Chengdu 611756, Peoples R China
[2] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
Geothermal energy is one of renewable and clean energy resources. Predicting geothermal productivity is an essential task for managing a continuable geothermal system, which is a huge challenge due to the highly nonlinear relationship between the productivity and constraint conditions, such as reservoir properties and operational conditions. Using numerical simulation to predict the geothermal productivity is computationally expensive and very time consuming. Therefore, this study proposes a novel Long Short-Term Memory (LSTM) and Multi-Layer Perceptron (MLP) combinational neural network to effectively forecast the geothermal productivity considering constraint conditions. In the LSTM and MLP combinational neural network, MLP is trained to learn the non-linear relationship between the geothermal productivity and constraint conditions, while LSTM is used to memorize sequential relations within the production data. We comprehensively evaluate the geothermal productivity prediction performance of the LSTM and MLP combinational network. It indicates that the LSTM and MLP combinational neural network could accurately and stably predict the geothermal productivity and has a good generalization ability. Compared with original LSTM, MLP, Simple Recurrent Neural Network (RNN), the LSTM and MLP combinational network demonstrates the best geothermal productivity prediction accuracy, stability and generalization ability. This study provides a high precision and efficiency forecasting method for the geothermal productivity prediction.
机构:
PetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R ChinaPetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
Huang, Ruijie
Wei, Chenji
论文数: 0引用数: 0
h-index: 0
机构:
PetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R ChinaPetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
Wei, Chenji
Wang, Baohua
论文数: 0引用数: 0
h-index: 0
机构:
PetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R ChinaPetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
Wang, Baohua
Yang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
PetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R ChinaPetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
Yang, Jian
Xu, Xin
论文数: 0引用数: 0
h-index: 0
机构:
KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, SE-10044 Stockholm, Sweden
Bytedance Inc, Hangzhou 310000, Peoples R ChinaPetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
Xu, Xin
Wu, Suwei
论文数: 0引用数: 0
h-index: 0
机构:
PetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R ChinaPetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
Wu, Suwei
Huang, Suqi
论文数: 0引用数: 0
h-index: 0
机构:
PetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R ChinaPetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
机构:
Loughborough Univ London, Inst Digital Technol, Queen Elizabeth Olymp Pk, London E20 3BS, EnglandLoughborough Univ London, Inst Digital Technol, Queen Elizabeth Olymp Pk, London E20 3BS, England
Shi, Haohan
Shi, Xiyu
论文数: 0引用数: 0
h-index: 0
机构:
Loughborough Univ London, Inst Digital Technol, Queen Elizabeth Olymp Pk, London E20 3BS, EnglandLoughborough Univ London, Inst Digital Technol, Queen Elizabeth Olymp Pk, London E20 3BS, England
Shi, Xiyu
Dogan, Safak
论文数: 0引用数: 0
h-index: 0
机构:
Loughborough Univ London, Inst Digital Technol, Queen Elizabeth Olymp Pk, London E20 3BS, EnglandLoughborough Univ London, Inst Digital Technol, Queen Elizabeth Olymp Pk, London E20 3BS, England
机构:
Lanzhou Jiaotong Univ, Sch Environm & Municipal Engn, Lanzhou 730070, Gansu, Peoples R China
Minist Educ, Engn Res Ctr Water Resource Comprehens Utilizat Co, Lanzhou 730070, Gansu, Peoples R ChinaLanzhou Jiaotong Univ, Sch Environm & Municipal Engn, Lanzhou 730070, Gansu, Peoples R China
Si, Zetian
Li, Zhuohao
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Jiaotong Univ, Sch Environm & Municipal Engn, Lanzhou 730070, Gansu, Peoples R ChinaLanzhou Jiaotong Univ, Sch Environm & Municipal Engn, Lanzhou 730070, Gansu, Peoples R China
Li, Zhuohao
Li, Ke
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Jiaotong Univ, Sch Environm & Municipal Engn, Lanzhou 730070, Gansu, Peoples R ChinaLanzhou Jiaotong Univ, Sch Environm & Municipal Engn, Lanzhou 730070, Gansu, Peoples R China
Li, Ke
Li, Zhiwei
论文数: 0引用数: 0
h-index: 0
机构:
Lanzhou Jiaotong Univ, Sch Environm & Municipal Engn, Lanzhou 730070, Gansu, Peoples R ChinaLanzhou Jiaotong Univ, Sch Environm & Municipal Engn, Lanzhou 730070, Gansu, Peoples R China
Li, Zhiwei
Wang, Gang
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R ChinaLanzhou Jiaotong Univ, Sch Environm & Municipal Engn, Lanzhou 730070, Gansu, Peoples R China
机构:
Laboratory of Marine Simulation and Control, Dalian Maritime University, DalianLaboratory of Marine Simulation and Control, Dalian Maritime University, Dalian
Tang H.
Yin Y.
论文数: 0引用数: 0
h-index: 0
机构:
Laboratory of Marine Simulation and Control, Dalian Maritime University, DalianLaboratory of Marine Simulation and Control, Dalian Maritime University, Dalian
Yin Y.
Shen H.
论文数: 0引用数: 0
h-index: 0
机构:
Laboratory of Marine Simulation and Control, Dalian Maritime University, DalianLaboratory of Marine Simulation and Control, Dalian Maritime University, Dalian
机构:
Shandong Univ, Geotech & Struct Engn Res Ctr, Jinan, Peoples R China
Shandong Univ, Sch Qilu Transportat, Jinan, Peoples R ChinaShandong Univ, Geotech & Struct Engn Res Ctr, Jinan, Peoples R China
Gao, Boyang
Wang, RuiRui
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Geotech & Struct Engn Res Ctr, Jinan, Peoples R China
Shandong Univ, Sch Qilu Transportat, Jinan, Peoples R ChinaShandong Univ, Geotech & Struct Engn Res Ctr, Jinan, Peoples R China
Wang, RuiRui
Lin, Chunjin
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Geotech & Struct Engn Res Ctr, Jinan, Peoples R China
Shandong Univ, Sch Civil Engn, Jinan, Peoples R ChinaShandong Univ, Geotech & Struct Engn Res Ctr, Jinan, Peoples R China
Lin, Chunjin
Guo, Xu
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Geotech & Struct Engn Res Ctr, Jinan, Peoples R ChinaShandong Univ, Geotech & Struct Engn Res Ctr, Jinan, Peoples R China
Guo, Xu
Liu, Bin
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Geotech & Struct Engn Res Ctr, Jinan, Peoples R China
Shandong Univ, Sch Qilu Transportat, Jinan, Peoples R China
Shandong Univ, Data Sci Inst, Jinan, Peoples R ChinaShandong Univ, Geotech & Struct Engn Res Ctr, Jinan, Peoples R China
Liu, Bin
Zhang, Wengang
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ, Key Lab New Technol Construct Cities Mt Area, Chongqing, Peoples R China
Chongqing Univ, Natl Joint Engn Res Ctr Geohazards Prevent Reserv, Chongqing, Peoples R China
Chongqing Univ, Sch Civil Engn, Chongqing, Peoples R ChinaShandong Univ, Geotech & Struct Engn Res Ctr, Jinan, Peoples R China