A new iterative method for solving complex symmetric linear systems

被引:1
作者
Zhang, Jianhua [1 ]
Dai, Hua [2 ]
机构
[1] East China Univ Technol, Sch Sci, Nanchang 330013, Jiangxi, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
SQMR; PMHSS; Complex symmetric linear systems; Preconditioning; MINIMAL RESIDUAL ALGORITHM; AHEAD LANCZOS-ALGORITHM; BICOR METHOD; COCR METHOD; PRECONDITIONERS; IMPLEMENTATION; VARIANTS; QMR;
D O I
10.1016/j.amc.2017.01.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on implementation of the quasi-minimal residual (QMR) and biconjugate A-orthogonal residual (BiCOR) method, a new Krylov subspace method is presented for solving complex symmetric linear systems. The new method can be combined with arbitrary symmetric preconditioners. The preconditioned modified Hermitian and Skew-Hermitian splitting (PMHSS) preconditioner is used to accelerate the convergence rate of this method. Numerical experiments indicate that the proposed method and its preconditioned version are efficient and robust, in comparison with other Krylov subspace methods. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:9 / 20
页数:12
相关论文
共 44 条
  • [1] On preconditioned MHSS iteration methods for complex symmetric linear systems
    Bai, Zhong-Zhi
    Benzi, Michele
    Chen, Fang
    [J]. NUMERICAL ALGORITHMS, 2011, 56 (02) : 297 - 317
  • [2] Modified HSS iteration methods for a class of complex symmetric linear systems
    Bai, Zhong-Zhi
    Benzi, Michele
    Chen, Fang
    [J]. COMPUTING, 2010, 87 (3-4) : 93 - 111
  • [3] Hermitian and skew-Hermitian splitting methods for non-hermitian positive definite linear systems
    Bai, ZZ
    Golub, GH
    Ng, MK
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 24 (03) : 603 - 626
  • [4] Bank R. E., 1994, Numerical Algorithms, V7, P1, DOI 10.1007/BF02141258
  • [5] AN ANALYSIS OF THE COMPOSITE STEP BICONJUGATE GRADIENT-METHOD
    BANK, RE
    CHAN, TF
    [J]. NUMERISCHE MATHEMATIK, 1993, 66 (03) : 295 - 319
  • [6] A fast algorithm for the electromagnetic scattering from a large cavity
    Bao, G
    Sun, WW
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (02) : 553 - 574
  • [7] Barrett R., 1996, TEMPLATES SOLUTION L
  • [8] A BREAKDOWN-FREE LANCZOS TYPE ALGORITHM FOR SOLVING LINEAR-SYSTEMS
    BREZINSKI, C
    ZAGLIA, MR
    SADOK, H
    [J]. NUMERISCHE MATHEMATIK, 1992, 63 (01) : 29 - 38
  • [9] New look-ahead Lanczos-type algorithms for linear systems
    Brezinski, C
    Zaglia, MR
    Sadok, H
    [J]. NUMERISCHE MATHEMATIK, 1999, 83 (01) : 53 - 85
  • [10] On a conjugate gradient-type method for solving complex symmetric linear systems
    Bunse-Gerstner, A
    Stöver, R
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 287 (1-3) : 105 - 123