GANobfuscator: Mitigating Information Leakage Under GAN via Differential Privacy

被引:126
|
作者
Xu, Chugui [1 ]
Ren, Ju [1 ]
Zhang, Deyu [1 ]
Zhang, Yaoxue [1 ]
Qin, Zhan [2 ]
Ren, Kui [2 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Zhejiang Univ, Inst Cyberspace Res, Hangzhou 310058, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
Information leakage; generative adversarial network; deep learning; differential privacy; NOISE;
D O I
10.1109/TIFS.2019.2897874
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
By learning generative models of semantic-rich data distributions from samples, generative adversarial network (GAN) has recently attracted intensive research interests due to its excellent empirical performance as a generative model. The model is used to estimate the underlying distribution of a dataset and randomly generate realistic samples according to their estimated distribution. However, GANs can easily remember training samples due to the high model complexity of deep networks. When GANs are applied to private or sensitive data, the concentration of distribution may divulge some critical information. It consequently requires new technological advances to mitigate the information leakage under GANs. To address this issue, we propose GANobfuscator, a differentially private GAN, which can achieve differential privacy under GANs by adding carefully designed noise to gradients during the learning procedure. With GANobfuscator, analysts are able to generate an unlimited amount of synthetic data for arbitrary analysis tasks without disclosing the privacy of training data. Moreover, we theoretically prove that GANobfuscator can provide strict privacy guarantee with differential privacy. In addition, we develop a gradient-pruning strategy for GANobfuscator to improve the scalability and stability of data training. Through extensive experimental evaluation on benchmark datasets, we demonstrate that GANobfuscator can produce high-quality generated data and retain desirable utility under practical privacy budgets.
引用
收藏
页码:2358 / 2371
页数:14
相关论文
共 50 条
  • [41] Proving Differential Privacy via Probabilistic Couplings
    Barthe, Gilles
    Gaboardi, Marco
    Gregoire, Benjamin
    Hsu, Justin
    Strub, Pierre-Yves
    PROCEEDINGS OF THE 31ST ANNUAL ACM-IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2016), 2016, : 749 - 758
  • [42] Federated Recommendation System via Differential Privacy
    Li, Tan
    Song, Linqi
    Fragouli, Christina
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 2592 - 2597
  • [43] Information entropy differential privacy: A differential privacy protection data method based on rough set theory
    Li, Xianxian
    Luo, Chunfeng
    Liu, Peng
    Wang, Li-E
    IEEE 17TH INT CONF ON DEPENDABLE, AUTONOM AND SECURE COMP / IEEE 17TH INT CONF ON PERVAS INTELLIGENCE AND COMP / IEEE 5TH INT CONF ON CLOUD AND BIG DATA COMP / IEEE 4TH CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2019, : 918 - 923
  • [44] Optimal Binary Differential Privacy via Graphs
    Torkamani S.
    Ebrahimi J.B.
    Sadeghi P.
    D'Oliveira R.G.L.
    Medard M.
    IEEE Journal on Selected Areas in Information Theory, 2024, 5 : 162 - 174
  • [45] Optimizing Batch Linear Queries under Exact and Approximate Differential Privacy
    Yuan, Ganzhao
    Zhang, Zhenjie
    Winslett, Marianne
    Xiao, Xiaokui
    Yang, Yin
    Hao, Zhifeng
    ACM TRANSACTIONS ON DATABASE SYSTEMS, 2015, 40 (02):
  • [46] Sensitivity reduction of degree histogram publication under node differential privacy via mean filtering
    Sun Lan
    Huang Xin
    Wu Yingjie
    Guo Yongyi
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (08)
  • [47] Distribution Simulation Under Local Differential Privacy
    Asoodeh, Shahab
    2022 17TH CANADIAN WORKSHOP ON INFORMATION THEORY (CWIT), 2022, : 57 - 61
  • [48] Sensitive Disclosures under Differential Privacy Guarantees
    Han, Chao
    Wang, Ke
    2015 IEEE INTERNATIONAL CONGRESS ON BIG DATA - BIGDATA CONGRESS 2015, 2015, : 110 - 117
  • [49] Network Structure Release under Differential Privacy
    Nguyen, Hiep H.
    Imine, Abdessamad
    Rusinowitch, Michael
    TRANSACTIONS ON DATA PRIVACY, 2016, 9 (03) : 215 - 241
  • [50] Collaborative ensemble learning under differential privacy
    Xiang, Tao
    Li, Yang
    Li, Xiaoguo
    Zhong, Shigang
    Yu, Shui
    WEB INTELLIGENCE, 2018, 16 (01) : 73 - 87