GANobfuscator: Mitigating Information Leakage Under GAN via Differential Privacy

被引:143
作者
Xu, Chugui [1 ]
Ren, Ju [1 ]
Zhang, Deyu [1 ]
Zhang, Yaoxue [1 ]
Qin, Zhan [2 ]
Ren, Kui [2 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Zhejiang Univ, Inst Cyberspace Res, Hangzhou 310058, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
Information leakage; generative adversarial network; deep learning; differential privacy; NOISE;
D O I
10.1109/TIFS.2019.2897874
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
By learning generative models of semantic-rich data distributions from samples, generative adversarial network (GAN) has recently attracted intensive research interests due to its excellent empirical performance as a generative model. The model is used to estimate the underlying distribution of a dataset and randomly generate realistic samples according to their estimated distribution. However, GANs can easily remember training samples due to the high model complexity of deep networks. When GANs are applied to private or sensitive data, the concentration of distribution may divulge some critical information. It consequently requires new technological advances to mitigate the information leakage under GANs. To address this issue, we propose GANobfuscator, a differentially private GAN, which can achieve differential privacy under GANs by adding carefully designed noise to gradients during the learning procedure. With GANobfuscator, analysts are able to generate an unlimited amount of synthetic data for arbitrary analysis tasks without disclosing the privacy of training data. Moreover, we theoretically prove that GANobfuscator can provide strict privacy guarantee with differential privacy. In addition, we develop a gradient-pruning strategy for GANobfuscator to improve the scalability and stability of data training. Through extensive experimental evaluation on benchmark datasets, we demonstrate that GANobfuscator can produce high-quality generated data and retain desirable utility under practical privacy budgets.
引用
收藏
页码:2358 / 2371
页数:14
相关论文
共 44 条
[41]   PrivBayes: Private Data Release via Bayesian Networks [J].
Zhang, Jun ;
Cormode, Graham ;
Procopiuc, Cecilia M. ;
Srivastava, Divesh ;
Xiao, Xiaokui .
ACM TRANSACTIONS ON DATABASE SYSTEMS, 2017, 42 (04)
[42]  
Zhang X., 2018, Differentially Private Releasing via Deep Generative Model
[43]  
Zhao J, 2016, 2016 IEEE MTT-S INTERNATIONAL WIRELESS SYMPOSIUM (IWS), DOI 10.1109/ICSSSM.2016.7538614
[44]   Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro [J].
Zheng, Zhedong ;
Zheng, Liang ;
Yang, Yi .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :3774-3782