DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability

被引:699
作者
Rodrigues, Carlos H. M. [1 ]
Pires, Douglas E., V [2 ]
Ascher, David B. [1 ,2 ,3 ]
机构
[1] Univ Melbourne, Mol Sci & Biotechnol Inst Bio21, Dept Biochem & Mol Biol, Melbourne, Vic, Australia
[2] Fundacao Oswaldo Cruz, Inst Rene Rachou, Rio De Janeiro, Brazil
[3] Univ Cambridge, Dept Biochem, Cambridge, England
基金
英国医学研究理事会;
关键词
NORMAL-MODE ANALYSIS; WEB SERVER; GENETIC-DISEASE; MECHANISMS;
D O I
10.1093/nar/gky300
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proteins are highly dynamic molecules, whose function is intrinsically linked to their molecular motions. Despite the pivotal role of protein dynamics, their computational simulation cost has led to most structure-based approaches for assessing the impact of mutations on protein structure and function relying upon static structures. Here we present DynaMut, a web server implementing two distinct, well established normal mode approaches, which can be used to analyze and visualize protein dynamics by sampling conformations and assess the impact of mutations on protein dynamics and stability resulting from vibrational entropy changes. DynaMut integrates our graph-based signatures along with normal mode dynamics to generate a consensus prediction of the impact of a mutation on protein stability. We demonstrate our approach outperforms alternative approaches to predict the effects of mutations on protein stability and flexibility (P-value < 0.001), achieving a correlation of up to 0.70 on blind tests. DynaMut also provides a comprehensive suite for protein motion and flexibility analysis and visualization via a freely available, user friendly web server at http://biosig.unimelb.edu.au/dynamut/.
引用
收藏
页码:W350 / W355
页数:6
相关论文
共 49 条
  • [1] Combating mutations in genetic disease and drug resistance: understanding molecular mechanisms to guide drug design
    Albanaz, Amanda T. S.
    Rodrigues, Carlos H. M.
    Pires, Douglas E. V.
    Ascher, David B.
    [J]. EXPERT OPINION ON DRUG DISCOVERY, 2017, 12 (06) : 553 - 563
  • [2] Potent hepatitis C inhibitors bind directly to NS5A and reduce its affinity for RNA
    Ascher, David B.
    Wielens, Jerome
    Nero, Tracy L.
    Doughty, Larissa
    Morton, Craig J.
    Parker, Michael W.
    [J]. SCIENTIFIC REPORTS, 2014, 4
  • [3] Normal Mode Analysis of Biomolecular Structures: Functional Mechanisms of Membrane Proteins
    Bahar, Ivet
    Lezon, Timothy R.
    Bakan, Ahmet
    Shrivastava, Indira H.
    [J]. CHEMICAL REVIEWS, 2010, 110 (03) : 1463 - 1497
  • [4] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [5] FlexServ: an integrated tool for the analysis of protein flexibility
    Camps, Jordi
    Carrillo, Oliver
    Emperador, Agusti
    Orellana, Laura
    Hospital, Adam
    Rueda, Manuel
    Cicin-Sain, Damjan
    D'Abramo, Marco
    Lluis Gelpi, Josep
    Orozco, Modesto
    [J]. BIOINFORMATICS, 2009, 25 (13) : 1709 - 1710
  • [6] I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure
    Capriotti, E
    Fariselli, P
    Casadio, R
    [J]. NUCLEIC ACIDS RESEARCH, 2005, 33 : W306 - W310
  • [7] SDHA related tumorigenesis: a new case series and literature review for variant interpretation and pathogenicity
    Casey, Ruth T.
    Ascher, David B.
    Rattenberry, Eleanor
    Izatt, Louise
    Andrews, Katrina A.
    Simpson, Helen L.
    Challis, Benjamen
    Park, Soo-Mi
    Bulusu, Venkata R.
    Lalloo, Fiona
    Pires, Douglas E. V.
    West, Hannah
    Clark, Graeme R.
    Smith, Philip S.
    Whitworth, James
    Papathomas, Thomas G.
    Taniere, Phillipe
    Savisaar, Rosina
    Hurst, Laurence D.
    Woodward, Emma R.
    Maher, Eamonn R.
    [J]. MOLECULAR GENETICS & GENOMIC MEDICINE, 2017, 5 (03): : 237 - 250
  • [8] Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0
    Dehouck, Yves
    Grosfils, Aline
    Folch, Benjamin
    Gilis, Dimitri
    Bogaerts, Philippe
    Rooman, Marianne
    [J]. BIOINFORMATICS, 2009, 25 (19) : 2537 - 2543
  • [9] The anisotropic network model web server at 2015 (ANM 2.0)
    Eyal, Eran
    Lum, Gengkon
    Bahar, Ivet
    [J]. BIOINFORMATICS, 2015, 31 (09) : 1487 - 1489
  • [10] A Coarse-Grained Elastic Network Atom Contact Model and Its Use in the Simulation of Protein Dynamics and the Prediction of the Effect of Mutations
    Frappier, Vincent
    Najmanovich, Rafael J.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (04)