Deformations of Constant Scalar Curvature Sasakian Metrics and K-Stability

被引:11
作者
van Coevering, Craig [1 ]
Tipler, Carl [2 ]
机构
[1] USTC, Sch Math Sci, Anhui 230026, Hefei, Peoples R China
[2] Univ Bretagne, Dept Math, F-29238 Brest 3, France
关键词
EINSTEIN-METRICS; EXISTENCE; MANIFOLDS; GEOMETRY; FLOW;
D O I
10.1093/imrn/rnv029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Extending the work of G. Szekelyhidi and T. Bronnle to Sasakian manifolds, we prove that a small deformation of the complex structure of the cone of a constant scalar curvature Sasakian (cscS) manifold admits a constant scalar curvature structure if it is K-polystable. This also implies that a small deformation of the complex structure of the cone of a constant scalar curvature structure is K-semistable. As applications, we give examples of cscS manifolds which are deformations of toric examples, and we also show that if a 3-Sasakian manifold admits a nontrivial transversal complex deformation, then it admits a nontrivial Sasaki-Einstein deformation.
引用
收藏
页码:11566 / 11604
页数:39
相关论文
共 48 条
[1]   Kahler-Sasaki geometry of toric symplectic cones in action-angle coordinates [J].
Abreu, Miguel .
PORTUGALIAE MATHEMATICA, 2010, 67 (02) :121-153
[2]  
Acharya B.S., 1999, ADV THEOR MATH PHYS, V2, P1249
[3]  
Boyer C, 1999, J DIFFER GEOM, P123
[4]   Canonical sasakian metrics [J].
Boyer, Charles P. ;
Galicki, Krzysztof ;
Simanca, Santiago R. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (03) :705-733
[5]   Compact 3-Sasakian 7-manifolds with arbitrary second Betti number [J].
Boyer, CP ;
Galicki, K ;
Mann, BM ;
Rees, EG .
INVENTIONES MATHEMATICAE, 1998, 131 (02) :321-344
[6]   Einstein metrics on spheres [J].
Boyer, CP ;
Galicki, K ;
Kollár, J .
ANNALS OF MATHEMATICS, 2005, 162 (01) :557-580
[7]  
Boyer CP., 2008, Sasakian Geometry
[8]  
Bronnle T., 2011, THESIS
[9]   Calabi flow, geodesic rays, and uniqueness of constant scalar curvature Kahler metrics [J].
Chen, Xiuxiong ;
Sun, Song .
ANNALS OF MATHEMATICS, 2014, 180 (02) :407-454
[10]   Constant Scalar Curvature Metrics on Toric Surfaces [J].
Donaldson, Simon K. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (01) :83-136