Advanced Spectroelectrochemical Techniques to Study Electrode InterfacesWithin Lithium-Ion and Lithium-Oxygen Batteries

被引:41
作者
Cowan, Alexander J. [1 ]
Hardwick, Laurence J. [1 ]
机构
[1] Univ Liverpool, Stephenson Inst Renewable Energy, Dept Chem, Liverpool L69 7ZD, Merseyside, England
来源
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 12 | 2019年 / 12卷
关键词
SHINERS; SEIRAS; near-field IR; sum frequency generation; solid electrolyte interphase; electrode interface; ENHANCED RAMAN-SPECTROSCOPY; IR NEAR-FIELD; IN-SITU; INFRARED-SPECTROSCOPY; VIBRATIONAL SPECTROSCOPY; INTERFACIAL PROCESSES; REDUCTION REACTION; DIETHYL CARBONATE; SILICON ANODES; SURFACE;
D O I
10.1146/annurev-anchem-061318-115303
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Lithium battery technologies have revolutionized mobile energy storage, but improvements in the technology are still needed. Critical to delivering new light weight, high capacity, safe devices is an improved understanding of the dynamic processes occurring at the electrode-electrolyte interfaces. Therefore, alongside advances in materials there has been a parallel progression in advanced characterization methods. Herein, recent developments for operando spectro-electrochemical techniques centered on Raman, infrared, and sum frequency generation are described within the context of lithium-ion and non-aqueous lithium-oxygen battery research. In particular, shell-isolated nanoparticles for enhanced Raman spectroscopy (SHINERS), surface-enhanced infrared absorption spectroscopy (SEIRAS), and near-field infrared are explained and critically evaluated, and future opportunities discussed. The aim is to introduce the wider community to the developing range of methodologies and tools now available in the hope that it encourages greater usage across the sector.
引用
收藏
页码:323 / 346
页数:24
相关论文
共 81 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]  
Aurbach D, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.128, 10.1038/NENERGY.2016.128]
[3]   Near-Field IR Nanoscale Imaging of the Solid Electrolyte Interphase on a HOPG Electrode [J].
Ayache, Maurice ;
Jong, Dongyoun ;
Syzdek, Jaroslaw ;
Kostecki, Robert .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (13) :A7078-A7082
[4]   IR Near-Field Study of the Solid Electrolyte Interphase on a Tin Electrode [J].
Ayache, Maurice ;
Lux, Simon Franz ;
Kostecki, Robert .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (07) :1126-1129
[5]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[6]   Face-Dependent Shell-Isolated Nanoparticle Enhanced Raman Spectroscopy of 2,2′-Bipyridine on Au(100) and Au(111) [J].
Butcher, Dennis P., Jr. ;
Boulos, Stefano P. ;
Murphy, Catherine J. ;
Ambrosio, Renato Canha ;
Gewirth, Andrew A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (08) :5128-5140
[7]   Understanding the Interfacial Processes at Silicon-Copper Electrodes in Ionic Liquid Battery Electrolyte [J].
Cao Cuong Nguyen ;
Woo, Sang-Wook ;
Song, Seung-Wan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (28) :14764-14771
[8]   Spectroscopic Insight into Li-Ion Batteries during Operation: An Alternative Infrared Approach [J].
Dalla Corte, Daniel Alves ;
Caillon, Georges ;
Jordy, Christian ;
Chazalviel, Jean-Noel ;
Rosso, Michel ;
Ozanam, Francois .
ADVANCED ENERGY MATERIALS, 2016, 6 (02)
[9]   Irreversible morphological changes of a graphite negative-electrode at high potentials in LiPF6-based electrolyte solution [J].
Domi, Yasuhiro ;
Doi, Takayuki ;
Tsubouchi, Shigetaka ;
Yamanaka, Toshiro ;
Abe, Takeshi ;
Ogumi, Zempachi .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (32) :22426-22433
[10]   Reactions in the Rechargeable Lithium-O2 Battery with Alkyl Carbonate Electrolytes [J].
Freunberger, Stefan A. ;
Chen, Yuhui ;
Peng, Zhangquan ;
Griffin, John M. ;
Hardwick, Laurence J. ;
Barde, Fanny ;
Novak, Petr ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (20) :8040-8047