Kerr-Newman-AdS black hole in quintessential dark energy

被引:89
作者
Xu, Zhaoyi [1 ,2 ,3 ,4 ]
Wang, Jiancheng [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Yunnan Observ, 396 Yangfangwang, Guandu Dist 650216, Kunming, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Key Lab Struct & Evolut Celestial Objects, 396 Yangfangwang, Guandu Dist 650216, Kunming, Peoples R China
[4] Chinese Acad Sci, Ctr Astron Mega Sci, 20A Datun Rd, Beijing 100012, Peoples R China
基金
中国国家自然科学基金;
关键词
COSMOLOGICAL CONSTANT; MOTION; KERR-(ANTI); PARTICLES; ORBITS; FIELD;
D O I
10.1103/PhysRevD.95.064015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Quintessential dark energy with pressure rho and density. is related by equation of state p =omega rho with the state parameter - 1 < omega < -1/3. The cosmological dark energy influence on black hole spacetime is interesting and important. In this paper, we study the Kerr-Newman-AdS solutions of the Einstein-Maxwell equation in quintessence field around a black hole by Newman-Janis algorithm and complex computations. From the horizon structure equation, we obtain the expression between quintessence parameter alpha and cosmological constant Lambda if the black hole exists two cosmological horizon r(q) and r(c) when omega = -2/3, the result is different from rotational black hole in quintessence matter situation. Through analysis we find that the black hole charge cannot change the value of alpha. But the black hole spin and cosmological constant are opposite. The black hole spin and cosmological constant make the maximum value of alpha small. The existence of four horizon leads seven types of extremal black holes to constrain the parameter alpha. With the state parameter omega ranging from -1 to - 1/3, the maximum value of alpha changes from Lambda to 1. When omega -> -1, the quintessential dark energy likes cosmological constant. The singularity of the black holes is the same with that of Kerr black hole. We also discuss the rotation velocity of the black holes on the equatorial plane for omega= - 2/3, - 1/2 and - 1/3. For small value of alpha, the rotation velocity on the equatorial plane is asymptotically flat and it can explain the rotation curves in spiral galaxies.
引用
收藏
页数:10
相关论文
共 31 条
  • [1] [Anonymous], ARXIVGRQC0303031
  • [2] Generating rotating regular black hole solutions without complexification
    Azreg-Ainou, Mustapha
    [J]. PHYSICAL REVIEW D, 2014, 90 (06):
  • [3] Axially symmetric solutions in f(R)-gravity
    Capozziello, Salvatore
    De Laurentis, Mariafelicia
    Stabile, Arturo
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (16)
  • [4] Carter B., 1973, Black Hole Equilibrium States, Black Holes, P57
  • [5] Dynamics of dark energy
    Copeland, Edmund J.
    Sami, M.
    Tsujikawa, Shinji
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2006, 15 (11): : 1753 - 1935
  • [6] Janis-Newman algorithm: simplifications and gauge field transformation
    Erbin, Harold
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2015, 47 (03)
  • [7] Rotating black hole and quintessence
    Ghosh, Sushant G.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (04):
  • [8] Analytical solution of the geodesic equation in Kerr-(anti-) de Sitter space-times
    Hackmann, Eva
    Laemmerzahl, Claus
    Kagramanova, Valeria
    Kunz, Jutta
    [J]. PHYSICAL REVIEW D, 2010, 81 (04):
  • [9] Marginally stable circular orbits in the Schwarzschild black hole surrounded by quintessence matter
    Hussain, Ibrar
    Ali, Sajid
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (08):
  • [10] Regular black hole metric with three constants of motion
    Johannsen, Tim
    [J]. PHYSICAL REVIEW D, 2013, 88 (04):