Synthesis and applications of amino-functionalized carbon nanomaterials

被引:48
作者
Garrido, Marina [1 ]
Gualandi, Lorenzo [1 ]
Di Noja, Simone [1 ]
Filippini, Giacomo [1 ]
Bosi, Susanna [1 ]
Prato, Maurizio [1 ,2 ,3 ]
机构
[1] Univ Trieste, Dept Chem & Pharmaceut Sci, Ctr Excellence Nanostruct Mat, CENMAT,INSTM UdR, Via Licio Giorgieri 1, I-34127 Trieste, Italy
[2] Basque Res & Technol Alliance BRTA, Ctr Cooperat Res Biomat CIC BiomaGUNE, Paseo Miramon 182, Donostia San Sebastian 20014, Spain
[3] Ikerbasque, Basque Fdn Sci, Bilbao 48013, Spain
关键词
LIQUID-PHASE EXFOLIATION; FULLERENE DERIVATIVES; AZOMETHINE YLIDES; CHEMICAL FUNCTIONALIZATION; ORGANIC FUNCTIONALIZATION; 1,3-DIPOLAR CYCLOADDITION; RATIOMETRIC FLUORESCENCE; ELECTRONIC-STRUCTURE; ENERGY-CONVERSION; GRAPHENE SHEETS;
D O I
10.1039/d0cc05316c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon-based nanomaterials (CNMs) have attracted considerable attention in the scientific community both from a scientific and an industrial point of view. Fullerenes, carbon nanotubes (CNTs), graphene and carbon dots (CDs) are the most popular forms and continue to be widely studied. However, the general poor solubility of many of these materials in most common solvents and their strong tendency to aggregate remains a major obstacle in practical applications. To solve these problems, organic chemistry offers formidable help, through the exploitation of tailored approaches, especially when aiming at the integration of nanostructures in biological systems. According to our experience with carbon-based nanostructures, the introduction of amino groups is one of the best trade-offs for the preparation of functionalized nanomaterials. Indeed, amino groups are well-known for enhancing the dispersion, solubilization, and processability of materials, in particular of CNMs. Amino groups are characterized by basicity, nucleophilicity, and formation of hydrogen or halogen bonding. All these features unlock new strategies for the interaction between nanomaterials and other molecules. This integration can occur either through covalent bonds (e.g.,viaamide coupling) or in a supramolecular fashion. In the present Feature Article, the attention will be focused through selected examples of our approach to the synthetic pathways necessary for the introduction of amino groups in CNMs and the subsequent preparation of highly engineeredad hocnanostructures for practical applications.
引用
收藏
页码:12698 / 12716
页数:19
相关论文
共 206 条
[1]   Asbestos-like Pathogenicity of Long Carbon Nanotubes Alleviated by Chemical Functionalization [J].
Ali-Boucetta, Hanene ;
Nunes, Antonio ;
Sainz, Raquel ;
Herrero, M. Antonia ;
Tian, Bowen ;
Prato, Maurizio ;
Bianco, Alberto ;
Kostarelos, Kostas .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (08) :2274-2278
[2]   Synthesis and Characterization of a Carbon Nanotube-Dendron Series for Efficient siRNA Delivery [J].
Antonia Herrero, M. ;
Toma, Francesca M. ;
Al-Jamal, Khuloud T. ;
Kostarelos, Kostas ;
Bianco, Alberto ;
Da Ros, Tatiana ;
Bano, Fouzia ;
Casalis, Loredana ;
Scoles, Giacinto ;
Prato, Maurizio .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (28) :9843-9848
[3]   Design, Synthesis, and Functionalization Strategies of Tailored Carbon Nanodots [J].
Arcudi, Francesca ;
Dordevic, Luka ;
Prato, Maurizio .
ACCOUNTS OF CHEMICAL RESEARCH, 2019, 52 (08) :2070-2079
[4]   Porphyrin Antennas on Carbon Nanodots: Excited State Energy and Electron Transduction [J].
Arcudi, Francesca ;
Strauss, Volker ;
Dordevic, Luka ;
Cadranel, Alejandro ;
Guldi, Dirk M. ;
Prato, Maurizio .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (40) :12097-12101
[5]   Rationally Designed Carbon Nanodots towards Pure White-Light Emission [J].
Arcudi, Francesca ;
Dordevic, Luka ;
Prato, Maurizio .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (15) :4170-4173
[6]   Synthesis, Separation, and Characterization of Small and Highly Fluorescent Nitrogen-Doped Carbon NanoDots [J].
Arcudi, Francesca ;
Dordevic, Luka ;
Prato, Maurizio .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (06) :2107-2112
[7]   Light harvesting tetrafullerene nanoarray for organic solar cells [J].
Atienza, CM ;
Fernández, G ;
Sánchez, L ;
Martín, N ;
Dantas, IS ;
Wienk, MM ;
Janssen, RAJ ;
Rahman, GMA ;
Guldi, DM .
CHEMICAL COMMUNICATIONS, 2006, (05) :514-516
[8]   Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities [J].
Baer, Donald R. ;
Engelhard, Mark H. ;
Johnson, Grant E. ;
Laskin, Julia ;
Lai, Jinfeng ;
Mueller, Karl ;
Munusamy, Prabhakaran ;
Thevuthasan, Suntharampillai ;
Wang, Hongfei ;
Washton, Nancy ;
Elder, Alison ;
Baisch, Brittany L. ;
Karakoti, Ajay ;
Kuchibhatla, Satyanarayana V. N. T. ;
Moon, DaeWon .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2013, 31 (05)
[9]  
Bagno A, 2002, CHEM-EUR J, V8, P1015, DOI 10.1002/1521-3765(20020301)8:5<1015::AID-CHEM1015>3.0.CO
[10]  
2-Q