Direct numerical simulation of incompressible multiphase flow with vaporization using moving particle semi-implicit method

被引:11
|
作者
Liu, Xiaoxing [1 ]
Morita, Koji [2 ]
Zhang, Shuai [3 ]
机构
[1] Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Zhuhai City 519082, Guangdong, Peoples R China
[2] Kyushu Univ, Dept Appl Quantum Phys & Nucl Engn, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
[3] Zhejiang Univ, Sch Aeronaut & Astronaut, 38 Zheda Rd, Hangzhou 310027, Zhejiang, Peoples R China
关键词
MPS; Multiphase flow; Phase change; Vaporization; VOLUME; COMPUTATIONS; FLUID; ALGORITHM; ACCURACY; DYNAMICS; TRACKING; MIXTURE; MODEL;
D O I
10.1016/j.jcp.2020.109911
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, the moving particle semi-implicit (MPS) method is developed towards the simulation of multiphase incompressible flows with mass transfer due to vaporization. Traditional MPS method assumes particle volume to be constant and encounters difficulty in modeling vapor-liquid phase change due to abrupt volume change in vaporization process. In the proposed model, particle volume is assumed variable and volume change due to vaporization is considered. Particle splitting technique is developed to avoid large volume difference among particles. Source term accounting for mass transfer rate in vaporization process is developed in the pressure Poisson equation (PPE). Combined with enhanced MPS schemes developed in our previous studies, the numerical method is tested on single rising bubble, one-dimensional Stefan problem, vapor film growth around a sphere without gravity and then used in simulations of two-dimensional film boiling on both horizontal surface and cylindrical surface. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Mass transfer mechanisms of rotary atomization: A numerical study using the moving particle semi-implicit method
    Sun, Zhongguo
    Chen, Xiao
    Xi, Guang
    Liu, Ling
    Chen, Xi
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 105 : 90 - 101
  • [22] Large deformation simulations of geomaterials using moving particle semi-implicit method
    Nohara, Shintaro
    Suenaga, Hiroshi
    Nakamura, Kunihiko
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2018, 10 (06) : 1122 - 1132
  • [23] Comparison of parallel solvers for Moving Particle Semi-Implicit method
    Duan, Guangtao
    Chen, Bin
    ENGINEERING COMPUTATIONS, 2015, 32 (03) : 834 - 862
  • [24] GPU-acceleration for Moving Particle Semi-Implicit method
    Hori, Chiemi
    Gotoh, Hitoshi
    Ikari, Hiroyuki
    Khayyer, Abbas
    COMPUTERS & FLUIDS, 2011, 51 (01) : 174 - 183
  • [25] A stable moving particle semi-implicit method with renormalized Laplacian model improved for incompressible free-surface flows
    Liu, Xiaoxing
    Morita, Koji
    Zhang, Shuai
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 356 : 199 - 219
  • [26] Simulation of melt spreading over dry substrates with the moving particle Semi-implicit method
    Zhao, Lu
    Punetha, Maneesh
    Ma, Weimin
    Konovalenko, Alexander
    Bechta, Sevostian
    NUCLEAR ENGINEERING AND DESIGN, 2023, 405
  • [27] An improved Multiphase Moving Particle Semi-implicit method in bubble rising simulations with large density ratios
    Guo, Kailun
    Chen, Ronghua
    Qiu, Suizheng
    Tian, Wenxi
    Su, Guanghui
    NUCLEAR ENGINEERING AND DESIGN, 2018, 340 : 370 - 387
  • [28] NUMERICAL SIMULATION OF OIL LEAKAGE, WATER FLOODING AND DAMAGED STABILITY OF OIL CARRIER BASED ON MOVING PARTICLE SEMI-IMPLICIT (MPS) METHOD
    Cheng, Liang-Yee
    Gomes, Diogo V.
    Yoshino, Adriano M.
    Nishimoto, Kazuo
    PARTICLE-BASED METHODS II: FUNDAMENTALS AND APPLICATIONS, 2011, : 853 - 864
  • [29] The truncation and stabilization error in multiphase moving particle semi-implicit method based on corrective matrix: Which is dominant?
    Duan, Guangtao
    Yamaji, Akifumi
    Koshizuka, Seiichi
    Chen, Bin
    COMPUTERS & FLUIDS, 2019, 190 : 254 - 273
  • [30] SIMULATION OF RED BLOOD CELL PASSING THROUGH CONSTRICTIONS USING MODIFIED MOVING PARTICLE SEMI-IMPLICIT METHOD
    Firoozbakhsh, K.
    Ahmadian, M. T.
    Hasanian, M.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 6, PTS A AND B, 2012, : 1083 - 1085